AIモデルで天文観測と測地測量の大気補正精度を向上(AI-Powered Model Enhances Atmospheric Calibration Precision for Astronomical Observation and Geodetic Measurement)

2025-10-15 中国科学院(CAS)

中国科学院・新疆天文台の研究チームは、GRUとLSTMを組み合わせたハイブリッド深層学習モデルにより、天頂対流圏遅延(ZTD)の予測精度を大幅に向上させました。GNSS観測と気象データを活用し、短期変動と長期傾向の双方をモデル化。予測誤差は約8mm、相関係数は96%に達し、従来手法を上回る性能を示しました。この成果は、VLBIやGNSSの観測精度向上、ミリ波天文学での気象支援、高周波望遠鏡運用の技術基盤として期待されます。

<関連情報>

ハイブリッド GRU-LSTM ディープラーニングモデルを用いた強化された天頂対流圏遅延予測 Enhanced Zenith Tropospheric Delay Forecasting Using a Hybrid GRU-LSTM Deep Learning Model

Ming-Shuai Li, Yu Li, Na Wang, Lang Cui, Ming Zhang, Jian Li and Xue-Feng Duan
Research in Astronomy and Astrophysics  Published: 12 September 2025
DOI:10.1088/1674-4527/adf70f

Abstract

Accurate estimation of Zenith Tropospheric Delay (ZTD) is essential for mitigating atmospheric effects in radio astronomical observations and improving the retrieval of precipitable water vapor (PWV). In this study, we first analyze the periodic characteristics of ZTD at the NanShan Radio Telescope site using Fourier transform, revealing its dominant seasonal variations, and then investigate the correlation between ZTD and local meteorological parameters, to better understand atmospheric influences on tropospheric delay. Based on these analyses, we propose a hybrid deep learning Gated Recurrent Units-Long Short-Term Memory model, incorporating meteorological parameters as external inputs to enhance ZTD forecasting accuracy. Experimental results demonstrate that the proposed approach achieves a Root Mean Squared Error of 7.97 mm and a correlation coefficient R of 96%, significantly outperforming traditional empirical models and standalone deep learning architectures. These findings indicate that the model effectively captures both short-term dynamics and long-term dependencies in ZTD variations. The improved ZTD predictions not only contribute to reducing atmospheric errors in radio astronomical observations but also provide a more reliable basis for PWV retrieval and forecasting. This study highlights the potential of deep learning in tropospheric delay modeling, offering advancements in both atmospheric science and geodetic applications.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました