植物-微生物相互作用が養分不足時の作物成長を促進する仕組みを解明(NUS-SCELSE researchers uncover hidden plant-microbe strategy that boosts crop growth under nutrient stress)

2025-10-10 シンガポール国立大学(NUS)

シンガポール国立大学(NUS)環境生命科学工学センター(SCELSE)の研究チームは、植物と根圏微生物の新たな共生戦略を発見した。硫黄欠乏環境下で、微生物が相互競合の結果「グルタチオン」を放出し、これが植物の成長を促進することを確認。微生物は自身の成長を犠牲にして植物を支える「王国間トレードオフ(trans-kingdom trade-off)」を示し、植物—微生物間の共進化メカニズムを明らかにした。この作用により、化学肥料に依存せずに硫黄不足土壌でも作物生産を維持できる可能性がある。研究成果は、持続可能な農業や環境負荷低減型施肥技術への応用が期待され、研究チームは関連特許を出願中である。

植物-微生物相互作用が養分不足時の作物成長を促進する仕組みを解明(NUS-SCELSE researchers uncover hidden plant-microbe strategy that boosts crop growth under nutrient stress)
The researchers found that soil microbes competing with each other release glutathione which enhances plant growth under sulphur-deficient conditions. (Image credit: Adapted from SCELSE)

<関連情報>

細菌シグナルが植物と微生物の適応度のトレードオフを調整し、植物の硫黄欠乏耐性を高める A bacterial signal coordinates plant-microbe fitness trade-off to enhance sulfur deficiency tolerance in plants

Arijit Mukherjee ∙ Mrinmoy Mazumder ∙ Arun Verma ∙ … ∙ Raktim Bhattacharya ∙ Qi En Ooi ∙ Sanjay Swarup
Cell Host & Microbe  Published:September 26, 2025
DOI:https://doi.org/10.1016/j.chom.2025.09.007

Highlights

  • Alterations in plant sulfur (S) levels reshape rhizosphere microbiome and S-metabolism
  • Taxonomically diverse rhizosphere bacteria promote plant growth under S-deficiency
  • Bacterial competition in the rhizosphere aids plant fitness under S-deficiency
  • Bacterial glutathione enhances plant growth under S-deficiency via fitness trade-off

Summary

Plant-associated microorganisms interact with each other and with host plants via intricate chemical signals, offering multiple benefits, including enhanced nutrition. We report a mechanism through which the rhizosphere microbiome improves plant growth under sulfur (S) deficiency. Disruption of plant S homeostasis caused a coordinated shift in the composition and S-metabolism of the rhizosphere microbiome. Leveraging this, we developed an 18-membered synthetic rhizosphere bacterial community (SynCom) that rescued the growth of Arabidopsis and a leafy Brassicaceae vegetable under S-deficiency. This beneficial trait is taxonomically widespread among SynCom members, with bacterial pairs providing both synergistic and neutral effects on host growth. Notably, stronger competitive interactions among SynCom members conferred greater fitness benefits to the host, suggesting a trans-kingdom (plant-microbe) fitness trade-off. Finally, guided chemical screening, deletion knockout mutants, and targeted metabolomics identified and validated microbially released glutathione (GSH) as the necessary bioactive signal that coordinates the trans-kingdom fitness trade-off and improves plant growth under sulfur limitation.

1202農芸化学
ad
ad
Follow
ad
タイトルとURLをコピーしました