EVのバッテリー寿命をAIで予測する技術(Smarter battery tech knows whether your EV will make it home)

2025-10-07 カリフォルニア大学リバーサイド校(UCR)

カリフォルニア大学リバーサイド校(UCR)の研究者は、EV(電気自動車)のバッテリーが「目的地まで到達できるか」を予測する新技術「State of Mission(SOM)」を開発した。SOMはバッテリーデータに加え、交通状況や気温、標高差などの環境要因を解析し、実際の運行条件下での達成可能性をリアルタイムに算出する。物理モデルとAI学習を融合したハイブリッド方式により、従来よりも高精度で信頼性の高い予測を実現。NASAやオックスフォード大のデータで検証した結果、電圧・温度・充電状態の誤差を大幅に低減した。将来的にはEVだけでなくドローン、電力網、宇宙探査などにも応用可能とされるが、現時点では計算負荷が課題である。

EVのバッテリー寿命をAIで予測する技術(Smarter battery tech knows whether your EV will make it home)
(UCR/Mihri Ozkan)

<関連情報>

ミッションの状態: ニューラルネットワークと電気化学AIによるバッテリー管理 State of mission: Battery management with neural networks and electrochemical AI

Cengiz S. Ozkan ∙ Mihrimah Ozkan
iScience  Published:October 7, 2025
DOI:https://doi.org/10.1016/j.isci.2025.113593

Highlights

  • Neural ODE framework models electrochemical, thermal, and aging dynamics
  • Physics-informed learning ensures physically consistent battery state predictions
  • SOM enables mission-aware battery state estimation for real-time decision-making
  • Hybrid AI model supports predictive, safe, and adaptive battery management systems

Summary

This work introduces a hybrid modeling framework for advanced battery management that combines neural ordinary differential equations (Neural ODEs) with physics-informed neural networks (PINNs) to achieve physically consistent, data-driven predictions of battery behavior. Sequential learning models, including long short-term memory (LSTMs) and Transformers, are integrated to capture temporal dependencies and provide continuous-time, high-fidelity estimation. A central contribution is the introduction of the state of mission (SOM), a mission-aware diagnostic metric that quantifies whether a battery can successfully complete a specific operational task. Unlike conventional measures such as state of charge (SOC) or state of health (SOH), SOM integrates internal state evolution, mission profiles, and safety constraints to forecast mission feasibility. The framework was validated through simulations and experimental data from the NASA PCoE and Oxford datasets. Results demonstrate robust prediction of coupled electrochemical-thermal dynamics and mission outcomes, offering a forward-looking tool for next-generation battery management systems in electric vehicles, aerial systems, and grid storage.

0108交通物流機械及び建設機械
ad
ad
Follow
ad
タイトルとURLをコピーしました