微生物DNA解析により湖の富栄養化が気候変動と栄養汚染によって加速(Microbial DNA sequencing reveals nutrient pollution and climate change reinforce lake eutrophication)

2025-09-30 カナダ・コンコーディア大学

コンコルディア大学主導の研究は、湖沼堆積物に含まれる微生物DNAの解析により、栄養塩汚染と気候変動が相互に作用し、湖の富栄養化を強化する仕組みを明らかにした。カナダ北西オンタリオの「実験湖沼域(ELA)」で過去50年以上の環境データと100年以上前まで遡る古遺伝子情報を統合解析した結果、施肥湖では急激な藻類群集の変化と持続的な藻類ブルームが観察され、無施肥湖では1980年代以降の温暖化に伴い緩やかな変化が確認された。統計モデル解析により、気候変動と栄養塩が同時に作用すると群集応答が最も強く現れることが判明し、両要因の相乗効果が湖生態系を不安定化させることを示した。本研究は湖沼管理や気候影響評価に新たな知見を提供する。

<関連情報>

実験湖における同期した時系列での富栄養化と温暖化による藻類群集の変化 Eutrophication and Warming Drive Algal Community Shifts in Synchronised Time Series of Experimental Lakes

Rebecca E. Garner, Zofia E. Taranu, Scott N. Higgins, Michael J. Paterson, Irene Gregory-Eaves, David A. Walsh
Environmental Microbiology  Published: 24 July 2025
DOI:https://doi.org/10.1111/1462-2920.70159

Graphical Abstract

Algal community dynamics recorded by traditional monitoring and paleogenetic analysis of sediment DNA archives of experimentally fertilised and unmanipulated lakes in the IISD Experimental Lakes Area exposed synergistic effects of eutrophication and climate warming.

微生物DNA解析により湖の富栄養化が気候変動と栄養汚染によって加速(Microbial DNA sequencing reveals nutrient pollution and climate change reinforce lake eutrophication)

ABSTRACT

Lake ecosystems are increasingly impacted by eutrophication and climate change. Whole-lake experiments have provided ecosystem-scale insights into the effects of freshwater stressors, yet these are constrained to the duration of monitoring programmes. Here, we leveraged multidecadal monitoring records and century-scale paleogenetic reconstructions for experimentally fertilised and unmanipulated lakes in the IISD Experimental Lakes Area of northwestern Ontario, Canada, to evaluate the responses of algal communities to nutrient and air temperature variation. We first validated the paleogenetic analysis of sediment DNA by demonstrating the synchrony of algal community changes with monitoring records. Algal communities underwent significant compositional shifts across experimental nutrient loading regimes and climate periods, with baseline assemblages informed by paleogenetics. Nonlinear regression modelling of algal community change in monitoring and paleogenetic time series showed the expected response that nutrients were strong drivers in fertilised lakes. Paleogenetic records reflected the century-scale impacts of climate warming and its combined effects with eutrophication, previously underestimated by monitoring. The synergy between eutrophication and warming points to eutrophic priming of the food web to respond to rising temperatures. Overall, the paleogenetic integration of algal diversity across habitats and seasons enables the detection of slow-acting climate change on lake ecosystems increasingly altered by nutrient pollution.

1900環境一般
ad
ad
Follow
ad
タイトルとURLをコピーしました