量子優位性を実証:学習タスクを2千万年から15分に短縮(Proven quantum advantage: Researchers cut the time for a learning task from 20 million years to 15 minutes)

2025-09-25 デンマーク工科大学(DTU)

デンマーク工科大学(DTU)らの研究チームは、量子光学を利用した学習タスクで明確な量子優位性を実証した。従来の古典的手法では約2,000万年を要すると見積もられたノイズを含むシステム学習を、エンタングルメント光を用いることでわずか15分で達成。光パルスをスクイーズ操作で絡み合わせ、片方をプローブ、もう片方を参照として同時計測することで、ノイズを部分的に打ち消し、データ取得効率を大幅に改善した。実験は通信波長域の既存光学技術で構築され、損失環境下でも性能を維持。これは量子物理の成果であると同時に、データ処理や情報システムにおける新しい学習戦略の実証でもあり、量子機械学習や高度なセンシング応用に向けた基盤となる。

量子優位性を実証:学習タスクを2千万年から15分に短縮(Proven quantum advantage: Researchers cut the time for a learning task from 20 million years to 15 minutes)
The squeezer – an optical parametric oscillator (OPO) that uses a nonlinear crystal inside an optical cavity to manipulate the quantum fluctuations of light. – is responsible for the entanglement. Photo: Jonas Schou Neergaard-Nielsen.

<関連情報>

スケーラブルな光子プラットフォームにおける量子学習の優位性 Quantum learning advantage on a scalable photonic platform

Zheng-Hao Liu, Romain Brunel, Emil E. B. Østergaard, Oscar Cordero, […] , and Ulrik L. Andersen
Science  Published:25 Sep 2025
DOI:https://doi.org/10.1126/science.adv2560

Editor’s summary

Understanding the properties of a system requires making measurements of a variable and then using that information to piece together a detailed understanding. As the system becomes more complex, the number of required measurements increases exponentially, placing fundamental limits on obtaining that information using classical means. Liu et al. demonstrated a quantum learning advantage in an optical system using entangled photons as probes to reduce the sampling complexity of the process by more than 11 orders of magnitude compared with classical probes. This result highlights a route to quantum enhanced learning protocols for machine learning and developing quantum technologies. — Ian S. Osborne

Abstract

Recent advances in quantum technologies have demonstrated that quantum systems can outperform classical ones in specific tasks, a concept known as quantum advantage. Although previous efforts have focused on computational speedups, a definitive and provable quantum advantage that is unattainable by any classical system has remained elusive. In this work, we demonstrate a provable photonic quantum advantage by implementing a quantum-enhanced protocol for learning a high-dimensional physical process. Using imperfect Einstein–Podolsky–Rosen entanglement, we achieve a sample complexity reduction of 11.8 orders of magnitude compared to classical methods without entanglement. These results show that large-scale, provable quantum advantage is achievable with current photonic technology and represent a key step toward practical quantum-enhanced learning protocols in quantum metrology and machine learning.

 

ボソンランダム変位チャネルの学習におけるエンタングルメント対応の利点 Entanglement-Enabled Advantage for Learning a Bosonic Random Displacement Channel

Changhun Oh, Senrui Chen, Yat Wong, Sisi Zhou, Hsin-Yuan Huang, Jens A. H. Nielsen, Zheng-Hao Liu, Jonas S. Neergaard-Nielsen, Ulrik L. Andersen et al.
Physical Review Letters  Published: 6 December, 2024
DOI: https://doi.org/10.1103/PhysRevLett.133.230604

Abstract

We show that quantum entanglement can provide an exponential advantage in learning properties of a bosonic continuous-variable (CV) system. The task we consider is estimating a probabilistic mixture of displacement operators acting on bosonic modes, called a random displacement channel. We prove that if the modes are not entangled with an ancillary quantum memory, then the channel must be sampled a number of times exponential in in order to estimate its characteristic function to reasonable precision; this lower bound on sample complexity applies even if the channel inputs and measurements performed on channel outputs are chosen adaptively or have unrestricted energy. On the other hand, we present a simple entanglement-assisted scheme that only requires a number of samples independent of in the large squeezing and noiseless limit. This establishes an exponential separation in sample complexity. We then analyze the effect of photon loss and show that the entanglement-assisted scheme is still significantly more efficient than any lossless entanglement-free scheme under mild experimental conditions. Our work illuminates the role of entanglement in learning CV systems and points toward experimentally feasible demonstrations of provable entanglement-enabled advantage using CV quantum platforms.

1603情報システム・データ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました