3Dプリント中の金属の微細構造変化をリアルタイムで観察(Researchers use Argonne’s APS to capture how the microstructure of metals evolves in real time during 3D printing)

2025-09-15 アルゴンヌ国立研究所(ANL)

米国アルゴンヌ国立研究所(Argonne)と共同研究機関は、高輝度X線施設「Advanced Photon Source(APS)」を用い、金属3Dプリンティング過程における微細構造の進化を世界で初めてリアルタイムで観測した。316Lステンレス鋼を対象に、レーザー溶融・急冷過程をX線回折で追跡した結果、これまで冷却後に生じると考えられていた転位が、液体から固体への変化初期段階ですでに形成されることを確認。二相同時析出が高密度転位の要因であることも明らかになった。この知見により、製造条件の制御や合金組成の最適化を通じて、強度や信頼性に優れた3Dプリント金属部品の開発が可能になる。成果は「Nature Communications」に掲載され、航空宇宙、防衛、エネルギー、次世代原子炉向け部材開発への応用が期待される。

<関連情報>

積層造形における急速凝固時の変位の進展 Evolution of dislocations during the rapid solidification in additive manufacturing

Lin Gao,Yan Chen,Xuan Zhang,Sean R. Agnew,Andrew C. Chuang & Tao Sun
Nature Communications  Published:20 May 2025
DOI:https://doi.org/10.1038/s41467-025-59988-5

3Dプリント中の金属の微細構造変化をリアルタイムで観察(Researchers use Argonne’s APS to capture how the microstructure of metals evolves in real time during 3D printing)

Abstract

Materials processed by fusion-based additive manufacturing (AM) typically exhibit relatively high dislocation densities, along with cellular structures and elemental segregation. This representative structural feature significantly influences material performance; however, post-mortem microstructure characterizations of AM materials cannot capture the dynamic evolution of dislocations during the manufacturing process, thereby offering limited mechanism-based guidance for further advancing AM techniques and facilitating the qualification and certification of AM products. In this study, we conduct operando high-energy synchrotron X-ray diffraction experiments on wire-laser directed energy deposition of 316 L stainless steel. Through a unique configuration, our operando synchrotron experiments semi-quantitatively probe the dislocation density in solid phases and their dynamic changes during solidification and subsequent cooling. By integrating this advanced synchrotron technique with multi-physics simulation, in-situ neutron diffraction, and multi-scale electron microscopy characterization, our mechanistic study aims to elucidate the effects of rapid cooling and subsequent thermal cycling on the dislocation generation and evolution.

0703金属材料
ad
ad
Follow
ad
タイトルとURLをコピーしました