AIと気候変動:温室効果ガス排出量を確実に記録する方法(AI and climate change: How to reliably record greenhouse gas emissions)

2025-09-05 ミュンヘン大学(LMU)

欧州連合内の大企業は温室効果ガス(GHG)排出量を企業のサステナビリティ報告書で開示する法的義務がありますが、PDF形式の長い報告書から手作業で情報を拾うのは時間と労力を要し、ミスも生じやすいという課題があります。ミュンヘン大学(LMU)の研究チームは、この問題に対し、Large Language Models(LLMs)などのAIを活用した自動化手法を開発。LLMにより報告書のテキストを読み取り、精度高く温室効果ガス排出データを抽出する仕組みを構築しました。この技術により、従来の手動読み取りに比べて効率性と正確性の向上が期待され、企業の情報透明性や監査の信頼性向上に寄与する可能性があります。

<関連情報>

サステナビリティ報告におけるデータギャップへの対応:温室効果ガス排出量抽出のためのベンチマークデータセット Addressing data gaps in sustainability reporting: A benchmark dataset for greenhouse gas emission extraction

Jacob Beck,Anna Steinberg,Andreas Dimmelmeier,Laia Domenech Burin,Emily Kormanyos,Maurice Fehr & Malte Schierholz
Scientific Data  Published:27 August 2025
DOI:https://doi.org/10.1038/s41597-025-05664-8

AIと気候変動:温室効果ガス排出量を確実に記録する方法(AI and climate change: How to reliably record greenhouse gas emissions)

Abstract

Reliable company-level greenhouse gas (GHG) emissions data are essential for stakeholders addressing the climate crisis. However, existing datasets are often fragmented, inconsistent, and lack transparent methodologies, making it difficult to obtain reliable emissions data. To address this challenge, we present a gold standard dataset containing emission metrics extracted from 139 sustainability reports collected from company websites. This dataset acts as an intermediate step to validate and fine-tune models for large-scale extraction of emissions data from thousands of reports. We employ a Large Language Model (LLM)-powered extraction pipeline to automatically extract emissions metrics. These values are then independently assessed by two non-expert annotators. Reports with full agreement are directly considered gold standard, while discrepancies undergo expert review in two stages, with remaining disagreements resolved through in-person discussions. This structured process ensures high data quality while reducing reliance on experts. Our dataset serves as a benchmark for human and automated annotation, with significant reuse potential for information extraction tasks in sustainable finance as well as other downstream tasks such as greenwashing analysis.

1904環境影響評価
ad
ad
Follow
ad
タイトルとURLをコピーしました