人工知能がLIGOの感度向上に貢献(Artificial Intelligence Helps Boost LIGO)

2025-09-04 カリフォルニア工科大学(Caltech)

CaltechとGoogle DeepMind、GSSIの共同研究で開発されたAI制御技術「Deep Loop Shaping」により、重力波観測所LIGOの性能が大幅に向上した。LIGOはブラックホール合体などで生じる重力波をレーザー干渉計で検出するが、わずかな振動が測定精度を妨げるため鏡の安定制御が重要課題だった。新手法はフィードバック制御ループにおけるノイズを30~100倍低減し、鏡の安定性を飛躍的に改善。これにより観測可能なイベント数が増え、中間質量ブラックホールなど従来困難だった重力波の検出も期待できる。さらに、既存設備の強化だけでなく、将来の地上・宇宙重力波観測所の設計にも応用可能である。本成果はAIを活用した観測技術の革新例として注目されている。

人工知能がLIGOの感度向上に貢献(Artificial Intelligence Helps Boost LIGO)
Closeup photograph of LIGO, which uses strong lasers and mirrors to detect gravitational waves in the universe, generated by events like collisions and mergers of black holes.Credit: Caltech/MIT/LIGO Lab

<関連情報>

ディープ・ループ・シェーピングを用いた重力波観測所の宇宙論的到達範囲の向上 Improving cosmological reach of a gravitational wave observatory using Deep Loop Shaping

Jonas Buchli, Brendan Tracey, Tomislav Andric, Christopher Wipf, […] , and The LIGO Instrument Team
Science  Published:4 Sep 2025
DOI:https://doi.org/10.1126/science.adw1291

Editor’s summary

Gravitational wave detectors have revolutionized astrophysics by detecting black holes and neutron stars. Most signals are captured in the 30- to 2000-Hz range, and the lower 10- to 30-Hz band remains largely unexplored because of persistent low-frequency control noise that limits sensitivity. Enhancing this sensitivity could increase cosmological reach. Using nonlinear optimal control through reinforcement learning with a frequency-domain reward, Buchli et al. developed a method that effectively reduces control noise in the low-frequency band. This method was successfully implemented at the Laser Interferometer Gravitational-Wave Observatory (LIGO) in Livingston and the Caltech 40 Meter Prototype, achieving control noise levels on LIGO’s most demanding feedback control loop below the quantum noise, thus removing a critical obstacle to increased detector sensitivity. —Yury Suleymanov

Abstract

Improved low-frequency sensitivity of gravitational wave observatories would unlock study of intermediate-mass black hole mergers and binary black hole eccentricity and provide early warnings for multimessenger observations of binary neutron star mergers. Today’s mirror stabilization control injects harmful noise, constituting a major obstacle to sensitivity improvements. We eliminated this noise through Deep Loop Shaping, a reinforcement learning method using frequency domain rewards. We proved our methodology on the LIGO Livingston Observatory (LLO). Our controller reduced control noise in the 10- to 30-hertz band by over 30x and up to 100x in subbands, surpassing the design goal motivated by the quantum limit. These results highlight the potential of Deep Loop Shaping to improve current and future gravitational wave observatories and, more broadly, instrumentation and control systems.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました