暗黒エネルギーとニュートリノ質量に関する研究(Dark energy-filled black holes plus DESI data give neutrino masses that make sense)

2025-08-21 ミシガン大学

ミシガン大学の研究チームは、DESI(暗黒エネルギー分光器)の最新データに「Cosmologically Coupled Black Holes(CCBH)」仮説を組み合わせ、宇宙論の難題に挑んだ。CCBHは、恒星が崩壊してブラックホールになる際に質量の一部がダークエネルギーへ変換されるとするモデルで、星形成率と宇宙膨張の加速を結びつける。解析の結果、これまで観測と理論の矛盾から「ゼロや負」と推定されがちだったニュートリノの総質量が、正の値として得られ、標準モデルと整合する結果が得られた。さらに、このモデルは宇宙の加速膨張の理解を助けるだけでなく、遠方超新星や初期宇宙の元素組成、さらには「ハッブル定数問題」の緩和にも寄与する可能性がある。本成果は、ダークエネルギーの性質とニュートリノ質量という二つの核心的課題に新しい光を当てるものであり、『Physical Review Letters』に掲載された。

暗黒エネルギーとニュートリノ質量に関する研究(Dark energy-filled black holes plus DESI data give neutrino masses that make sense)
Left: A key figure from the report, exploring what the cosmologically coupled black holes, or CCBH, hypothesis implies about the mass of neutrinos, or “ghost particles.” Right: An annotation of this figure simplifying its main ideas. Image credit: Claire Lamman/DESI Collaboration

<関連情報>

物質変換による暗エネルギー経由でDESI DR2が観測した正ニュートリノ質量 Positive Neutrino Masses with DESI DR2 via Matter Conversion to Dark Energy

S. P. Ahlen, A. Aviles, B. Cartwright, K. S. Croker, W. Elbers, D. Farrah, N. Fernandez, G. Niz, J. W. Rohlf, et al. (DESI Collaboration)
Physical Review Letters  Published: 21 August, 2025
DOI: https://doi.org/10.1103/yb2k-kn7h

Abstract

The Dark Energy Spectroscopic Instrument (DESI) is a massively parallel spectroscopic survey on the Mayall telescope at Kitt Peak, which has released measurements of baryon acoustic oscillations determined from over 14 million extragalactic targets. We combine DESI Data Release 2 with CMB datasets to search for evidence of matter conversion to dark energy (DE), focusing on a scenario mediated by stellar collapse to cosmologically coupled black holes (CCBHs). In this physical model, which has the same number of free parameters as Λ⁢CDM, DE production is determined by the cosmic star formation rate density (SFRD), allowing for distinct early- and late-time cosmologies. Using two SFRDs to bracket current observations, we find that the CCBH model: accurately recovers the cosmological expansion history, agrees with early-time baryon abundance measured by BBN, reduces tension with the local distance ladder, and relaxes constraints on the summed neutrino mass ∑. For these SFRDs, we find a peaked positive ∑<0.149  eV (95% confidence) and ∑=0.106+0.050−0.069  eV, respectively, in good agreement with lower limits from neutrino oscillation experiments. A peak in ∑ >0 results from late-time baryon consumption in the CCBH scenario and is expected to be a general feature of any model that converts sufficient matter to dark energy during and after reionization.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました