白金触媒によるバイオマス変換における水の重要な役割を解明(Scientists Decode Water’s Key Role in Platinum-Catalyzed Biomass Conversion)

2025-08-18 中国科学院(CAS)

中国科学院寧波材料技術与工程研究所(NIMTE)の張建教授と米CaltechのWilliam A. Goddard III教授らの研究チームは、水がプラチナ(Pt)触媒によるバイオマス転換を著しく促進する原子スケールの仕組みを解明した。バイオマスからの燃料・化学品生成にはフラン環のC−O結合開裂が不可欠だが、水中では有機溶媒中よりも反応が速く、生成物の選択性も異なる。本研究は同位体動力学実験と量子計算を組み合わせ、水が「プロトンシャトル」と「求核剤」として作用する二重機能を持つことを突き止めた。水はプロトン移動を助け低エネルギー障壁経路を活性化すると同時に、C(2)炭素への求核攻撃で中間体のヒドロキシル基移動を引き起こし、最終的に鎖状アルコールを生成する。またPtと水の界面で生成するH3O+が反応機構や速度に影響することも判明した。本成果は、持続可能なバイオベース化学品生産の効率化に理論的基盤を提供する。

白金触媒によるバイオマス変換における水の重要な役割を解明(Scientists Decode Water’s Key Role in Platinum-Catalyzed Biomass Conversion)The platinum-catalyzed biomass conversion through a water-mediated pathway. (Image by NIMTE)

<関連情報>

白金触媒におけるフラン環の触媒的開環反応における水媒介反応経路 The Water-Mediated Reaction Pathway for Catalytic Opening of the Furanic Ring on Platinum Catalysts

Mingxin Lv,Liyuan Huai,Zhilin Chen,Hongfeng Yin,William A. Goddard III,and Jian Zhang
Journal of the American Chemical Society  Published: August 9, 2025
DOI:https://doi.org/10.1021/jacs.5c02521

Abstract

The fundamental understanding of C–O bond activation in bioheterogeneous catalysts is essential for the lignocellulosic upgrading reaction in the liquid phase. Yet, multifaceted solvent effects complicate the analysis of the atomistic reaction mechanism. The use of protic solvents in the conversion of biomass-derived furanics into chain alcohols, carboxylic acids, and amines can lead to high rates, but the origin of the solvent-mediated rate enhancements remains largely unknown. Here, we consider 2,5-bis(hydroxymethyl)furan (BHMF) as a model substrate and elucidate the significant role of water-mediated protonation in selectively cleaving particular C–O–C bonds through insight from quantum mechanics (QM) theory combined with solid experimental kinetic evidence. Depending on the solvent, we observe that the initial product formation rate in water is about 2 orders of magnitude larger than that in dioxane. We show that water participates directly in reductive C–O–C bond scission via assisted proton transfer, activating a low-energy barrier path. We find that a water molecule acting as a nucleophile then subsequently attacks the C(2) carbon atom to initiate a hydroxyl shift process in the intermediate, which then undergoes stepwise hydrogenation to produce a chain alcohol. Throughout this catalytic cycle, hydronium ions are generated spontaneously at the metal/water interface to indirectly impact the mechanism and kinetics of the reactions. Furthermore, we reveal how substituent groups (e.g., hydroxymethyl) affect the direct nucleophilic attack of the furan ring by water, a finding that rationalizes long-standing selectivity challenges in biomass conversion. Our QM calculations provide new insights into C–O bond activation in the liquid phase, highlighting the influence of the microsolvation environment on controlling the reaction path.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました