温室効果ガスを宇宙から高精度に検出する新型画像機器を開発(Advanced Imaging Payload Developed for High-precision Detection of Greenhouse Gas Emissions from Space)

2025-07-29 中国科学院(CAS)

中国科学院合肥物質科学研究院の石海亮博士らが、CO₂とCH₄を高精度に検出できる赤外線画像ペイロードとAI解析技術を開発。新型衛星搭載装置「Hotspot Greenhouse Gas Monitoring Instrument」は約100mの分解能で排出源を特定・定量可能。都市・砂漠など複雑な地表背景に対応する「異質地表背景補正戦略」により、誤検出や見逃しを抑制。さらに、周波数・空間領域を融合した「FSDINet」と、クラスタリングと状態空間モデルを組み合わせた「kMetha-Mamba」で微弱な排出プルームの検出とノイズ抑制を実現。これは中国の次世代温室効果ガス観測衛星の中核技術となり、全球規模の炭素排出監視と対策に貢献する。

温室効果ガスを宇宙から高精度に検出する新型画像機器を開発(Advanced Imaging Payload Developed for High-precision Detection of Greenhouse Gas Emissions from Space)
Comparison of detection performance before and after signal interference suppression under different surface background conditions. (Image by WU Shichao)

<関連情報>

kMetha-Mamba: メタンプルームセグメンテーションのためのK平均法クラスタリングMamba kMetha-Mamba: K-means clustering mamba for methane plumes segmentation

Yuquan Liu, Hailiang Shi, Ke Cao, Shichao Wu, Hanhan Ye, Xianhua Wang, Erchang Sun, Yunfei Han, Wei Xiong
International Journal of Applied Earth Observation and Geoinformation  Available online: 25 June 2025
DOI:https://doi.org/10.1016/j.jag.2025.104664

Highlights

  • Introduces kMetha-Mamba: a novel methane plumes segmentation network.
  • Custom-designed Mamba block for updating cluster centers.
  • Achieves excellent performance across multiple datasets.

Abstract

Monitoring and curbing methane emissions is an important means of slowing global warming. Existing quantitative segmentation methods based on convolutional neural networks (CNNs) and Transformers are limited in their ability to process large-scale remote sensing images. They are also susceptible to interference from species with similar spectral features, resulting in high false positive rates. To cope with these difficulties, we propose kMetha-Mamba — a k-means clustering mamba-based network for methane plumes segmentation. Specifically, the spatial feature encoder (SFE) is employed to extract clustering patches from the methane enhancement product for follow-up complementary learning with spectral information. Subsequently, similar pixels are clustered based on the ability of spectral derivative to distinguish between subtle spectral variations in a continuous region and species with similar spectral features. However, traditional k-means clustering algorithms are susceptible to the influence of outliers. In this study, we revisit the relationship between pixels and the selective scanning mechanism from the perspective of clustering, and propose k-means mamba to implement cluster center updating by multi-directional local scanning, which mitigates the effect of outliers on cluster centers. Finally, kMetha-Mamba utilizes a mamba-based decoder (MBD) with linear complexity and long-range dependencies to achieve high efficiency and precision segmentation. Extensive experiments on hyperspectral and multispectral datasets from different sensors have shown that kMetha-Mamba has the best performance compared to the state-of-the-art methods. Among them, it achieve the highest accuracy of 88.69% and the lowest false positive rates of 0.0466% on the AVIRIS-NG dataset.

0303宇宙環境利用
ad
ad
Follow
ad
タイトルとURLをコピーしました