酸フッ化物光触媒による水素生成・二酸化炭素還元の効率を大幅に向上~太陽光エネルギーを活用して有用物質を高速製造~

2025-07-30 東京科学大学

東京科学大学らの研究チームは、酸フッ化物Pb₂Ti₂O₅.₄F₁.₂のナノ粒子をマイクロ波合成法で作製し、可視光で高効率に水素生成と二酸化炭素のギ酸還元を実現。従来比60倍の水素生成効率(量子収率15%)とギ酸生成効率(10.8%)を達成。粒径制御によって電荷再結合を抑え、高性能光触媒の低温合成を実現した。省エネかつ環境負荷の少ない製法で、再生可能エネルギー利用への貢献が期待される。

酸フッ化物光触媒による水素生成・二酸化炭素還元の効率を大幅に向上~太陽光エネルギーを活用して有用物質を高速製造~酸フッ化物光触媒のナノ粒子化による性能向上を示したデザインイラスト。

<関連情報>

可視光線による水素生成と二酸化炭素還元において改善された光触媒活性を示すメソポーラスオキシハロイド集合体 Mesoporous Oxyhalide Aggregates Exhibiting Improved Photocatalytic Activity for Visible-Light H2 Evolution and CO2 Reduction

Hiroto Ueki,Toshiya Tanaka,Shuji Anabuki,Ryuichi Nakada,Megumi Okazaki,Kenta Aihara,Masashi Hattori,Fumitaka Ishiwari,Rie Haruki,Shunsuke Nozawa,Toshiyuki Yokoi,Michikazu Hara,Osamu Ishitani,Akinori Saeki,Akira Yamakata,and Kazuhiko Maeda
ACS Catalysis  Published July 9, 2025
DOI:https://doi.org/10.1021/acscatal.5c02229

Abstract

Oxyhalides are promising visible-light photocatalysts for water splitting and CO2 conversion; however, those exhibiting high activity for these reactions have rarely been reported. Here, we show that using water-soluble Ti complexes as precursors in the microwave-assisted hydrothermal synthesis of the oxyhalide photocatalyst Pb2Ti2O5.4F1.2 (PTOF) resulted in the production of nanoparticulate PTOF. The primary particle size of the synthesized PTOF ranged from several tens of nanometers to several hundreds of nanometers. Using Ti-citric acid or Ti-tartaric acid complexes as precursors, the PTOF was formed as mesoporous aggregates, compared with a bulky analogue (0.5–1 μm) prepared using a TiCl4 precursor. The PTOF prepared from Ti-citric acid complex had a particle size of 50–100 nm and showed a one-order-of-magnitude greater activity for H2 evolution from an aqueous ethylenediaminetetraacetic acid solution with the aid of a Rh cocatalyst. An apparent quantum yield (AQY) of 15.4 ± 1.0% at 420 nm, which is the highest among the reported oxyhalide photocatalysts, was achieved under optimal conditions. Although excess particle size reduction of PTOF lowered the H2 evolution activity, the PTOF with the smallest possible primary particle size of 15–30 nm, prepared from Ti-tartaric acid complex, showed the highest activity toward the selective reduction of CO2 into formate in a nonaqueous environment when combined with a binuclear Ru(II) complex. The CO2 reduction AQY was 10.4 ± 1.8% at 420 nm, a record-high value among metal-complex/semiconductor binary hybrid photocatalysts. This study highlights the importance of morphological control of oxyhalides for realizing their full potential as photocatalysts for artificial photosynthesis.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました