ソーシャルロボットが人間の割り込みに対応する技術を開発(Talking robots learn to manage human interruptions)

2025-07-30 ジョンズ・ホプキンス大学(JHU)

ジョンズ・ホプキンズ大学の研究者は、会話中の「割り込み」をリアルタイムで検出し、意図に応じて適切に応答するAIシステムを開発した。割り込みを4種類に分類し、それぞれに最適な反応を設計。LLM搭載ロボットでの実験では93.7%の割り込みを正確に処理できた。この技術は教育・医療・接客分野などでの対話支援ロボットに応用可能で、より自然で人間らしい会話型AIの実現に貢献すると期待される。

<関連情報>

会話ロボットの割り込み処理 Interruption Handling for Conversational Robots

Shiye Cao, Jiwon Moon, Amama Mahmood, Victor Nikhil Antony, Ziang Xiao, Anqi Liu, Chien-Ming Huang
arXiv  last revised 26 Apr 2025 (this version, v2)
DOI:https://doi.org/10.48550/arXiv.2501.01568

ソーシャルロボットが人間の割り込みに対応する技術を開発(Talking robots learn to manage human interruptions)

Abstract

Interruptions, a fundamental component of human communication, can enhance the dynamism and effectiveness of conversations, but only when effectively managed by all parties involved. Despite advancements in robotic systems, state-of-the-art systems still have limited capabilities in handling user-initiated interruptions in real-time. Prior research has primarily focused on post hoc analysis of interruptions. To address this gap, we present a system that detects user-initiated interruptions and manages them in real-time based on the interrupter’s intent (i.e., cooperative agreement, cooperative assistance, cooperative clarification, or disruptive interruption). The system was designed based on interaction patterns identified from human-human interaction data. We integrated our system into an LLM-powered social robot and validated its effectiveness through a timed decision-making task and a contentious discussion task with 21 participants. Our system successfully handled 93.69% (n=104/111) of user-initiated interruptions. We discuss our learnings and their implications for designing interruption-handling behaviors in conversational robots.

1603情報システム・データ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました