人間の味覚を模倣するAI搭載デバイスを開発(AI-powered Device Enables Human-like Taste Perception)

2025-07-21 中国科学院(CAS)

中国科学院・国家ナノ科学センターの研究チームが、水中で味を識別・記憶できる「人工味覚デバイス」を開発。グラフェン酸化膜によるメモリスタ構造が、味物質のイオン移動と吸着によって感知と記憶を同時に実現。AIによる訓練で、酸味・苦味・甘味など基本味やコーヒーなどの複雑な風味も90%以上の精度で判別可能。センサーと処理が一体化された構造により、高速・低消費電力なニューロモルフィック味覚システムの実現に貢献。医療・環境モニタリングや自律ロボットへの応用が期待される。

<関連情報>

グラフェン酸化物膜内のイオンの閉じ込めにより、神経形態的人工味覚を実現 Confinement of ions within graphene oxide membranes enables neuromorphic artificial gustation

Yuchun Zhang, Lin Liu, Yu Qiao, +2 , and Yong Yan
Proceedings of the National Academy of Sciences  Published: July 7, 2025
DOI:https://doi.org/10.1073/pnas.2413060122

Significance

The development of fluidic neuromorphic components and perceiving systems for emulating the function of biological nervous systems is imperative and challenging. This study introduces a graphene oxide ionic memristive device capable of performing both sensory and computing functions. Experimental and theoretical simulations indicate that the prolonged retention of ions within graphene oxide channels accounts for the memristive characteristics. Importantly, this device can be used to construct a reservoir-computing gustatory system, which can effectively perceive sweet, salty, bitter, and sour flavors. Our system-level implementation of artificial gustation—although it is a proof-of-concept demonstration—should represent a substantial advancement toward future intelligent perceptions and/or taste reconstruction.

Abstract

Introducing neuromorphic computing paradigms into taste-sensing technology will bring unprecedented opportunities for developing new hardware architectures with perceptual intelligence. Constructing the biomimetic gustatory system, however, remains a challenge due to the scarcity of suitable components operating under wet conditions. Here, we report that ion confinement within the layered graphene oxide membranes can be used to develop a memristive device capable of implementing both synaptic function and chemical sensing. The continuum model and ion dynamics characterizations demonstrate that interfacial adsorption–desorption slows down ion transport and leads to memristive behavior. Based on this nanofluidic device, we built an artificial gustatory system in the physiological environment, which can efficiently classify different flavors according to the reservoir computing algorithm. Our results suggest a paradigm for in-sensor computing in liquid.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました