フィラメント分裂と二重構造形成の新機構を解明(Component Reconnection Drives Filament Splitting and Double-Decker Formation)

2025-07-14 中国科学院(CAS)

フィラメント分裂と二重構造形成の新機構を解明(Component Reconnection Drives Filament Splitting and Double-Decker Formation)
The black dashed lines in panel (a) show the brightening threads within the filament that feature a small-angle misalignment. The panels (b)-(d) show the two subsequent small-scale vertical jets. The panel (e) shows the distance-time plot made along the jet. The panels (f)-(g) show the results of the DEM analysis for the small jet S9. (Image by LIU Dongxu)

中国科学院雲南天文台の研究チームは、太陽フィラメントの分裂および「二層フィラメント(二重構造)」形成の新たなメカニズムとして「コンポーネント・リコネクション(成分磁気再結合)」を初めて観測した。これまで、フィラメントの分裂は噴出と同時期に発生し、同一の物理過程に起因するとされてきたが、本研究では噴出の1時間以上前に分裂が始まったことが示され、異なる機構による現象であることが判明した。分裂時には小規模な垂直ジェット(ナノジェット)が発生し、これは微小な磁場のズレによる再結合の特徴を示す。この発見は、大規模な太陽コロナ構造の変化に、微細な磁気再結合が影響を与える可能性を示し、関連する微小フレアの存在も裏付けるものである。

<関連情報>

成分磁気リコネクションによるダブルデッカーフィラメントの形成とダイナミクスの解読 Deciphering the Formation and Dynamics of Double-decker Filaments through Component Magnetic Reconnection

Dongxu Liu, Yuandeng Shen, Yi Bi, Zehao Tang, Chengrui Zhou, and Surui Yao
The Astrophysical Journal Letters  Published: 2025 June 24
DOI:10.3847/2041-8213/addfca

Abstract

The formation of double-decker filaments has long been an enigma in the field of solar physics. Using stereoscopic observations from the Solar Dynamics Observatory and the Solar Terrestrial Relations Observatory, we show that the double-decker filament formed on 2013 August 30 resulted from the splitting of a braided magnetic flux rope. The splitting was driven by component magnetic reconnection between intertwined field lines, triggered by the rotational motion in a part of one filament footpoint. This mechanism, inferred from observed small jets, brightenings, and bidirectional mass flows, differs from the previous conclusion attributing filament splitting to magnetic reconnection between the legs of confining magnetic field lines within or above the filament. The splitting speed might be modulated by the reconnection speed, as evidenced by the correspondence between the filament’s slow and fast rising phases and the intermittent and violent brightening stages. Following the splitting, the upper branch of the double-decker filament erupted as a coronal mass ejection, giving rise to a GOES soft X-ray M1.2 flare. In conclusion, our observations present a new formation mechanism for double-decker filaments, and the subsequent partial eruption is likely attributable to the torus instability of the background coronal magnetic field. Moreover, the detection of small jets within the filament provides new insights into the role of component magnetic reconnection in localized coronal heating processes.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました