自己駆動型ラボで材料開発を加速(Researchers Hit ‘Fast Forward’ on Materials Discovery with Self-Driving Labs)

ad

2025-07-14 ノースカロライナ州立大学(NCState)

ノースカロライナ州立大学の研究チームは、自己駆動型実験室に「動的流量実験」を導入し、従来の10倍以上のデータを短時間で取得可能にした。この手法では、化学反応を止めずに連続観測を行い、反応の様子を0.5秒ごとに記録。これにより、AIはより多くの高品質データを活用して最適な材料を迅速に特定できる。実験回数と化学物質の使用を大幅に減らし、材料開発のスピードと持続可能性を両立する新基準を確立した。

<関連情報>

フロー駆動型データ集約化により自律的無機材料探索が加速する Flow-driven data intensification to accelerate autonomous inorganic materials discovery

Fernando Delgado-Licona,Abdulrahman Alsaiari,Hannah Dickerson,Philip Klem,Arup Ghorai,Richard B. Canty,Jeffrey A. Bennett,Pragyan Jha,Nikolai Mukhin,Junbin Li,Enrique A. López-Guajardo,Sina Sadeghi,Fazel Bateni & Milad Abolhasani
Nature Chemical Engineering  Published:14 July 2025
DOI:https://doi.org/10.1038/s44286-025-00249-z

自己駆動型ラボで材料開発を加速(Researchers Hit ‘Fast Forward’ on Materials Discovery with Self-Driving Labs)

Abstract

The rapid discovery of advanced functional materials is critical for overcoming pressing global challenges in energy and sustainability. Despite recent progress in self-driving laboratories and materials acceleration platforms, their capacity to explore complex parameter spaces is hampered by low data throughput. Here we introduce dynamic flow experiments as a data intensification strategy for inorganic materials syntheses within self-driving fluidic laboratories by the continuous mapping of transient reaction conditions to steady-state equivalents. Applied to CdSe colloidal quantum dots, as a testbed, dynamic flow experiments yield at least an order-of-magnitude improvement in data acquisition efficiency and reducing both time and chemical consumption compared to state-of-the-art self-driving fluidic laboratories. By integrating real-time, in situ characterization with microfluidic principles and autonomous experimentation, a dynamic flow experiment fundamentally redefines data utilization in self-driving fluidic laboratories, accelerating the discovery and optimization of emerging materials and creating a sustainable foundation for future autonomous materials research.

1603情報システム・データ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました