AIでナノ粒子運動を解析するツールを開発(Study: New AI Tool Deciphers Mysteries of Nanoparticle Motion in Liquid Environments)

2025-07-11 ジョージア工科大学(Georgia Tech)

ジョージア工科大学の研究チームは、液中のナノ粒子の動きを解析・再現するAIツール「LEONARDO」を開発。液相電子顕微鏡で取得した約38,000件の実験データを基に、粒子サイズや流速などの条件を考慮したリアルな動作パターンを生成可能。物理法則を反映したAI設計により、動きの背景にある力学的要因の理解が可能となった。材料設計やバイオ医薬など幅広い応用が期待される。

<関連情報>

液相TEMにおけるナノ粒子の拡散を物理情報付き生成AIで学習する Learning the diffusion of nanoparticles in liquid phase TEM via physics-informed generative AI

Zain Shabeeb,Naisargi Goyal,Pagnaa Attah Nantogmah & Vida Jamali
Nature Communications  Published:08 July 2025
DOI:https://doi.org/10.1038/s41467-025-61632-1

AIでナノ粒子運動を解析するツールを開発(Study: New AI Tool Deciphers Mysteries of Nanoparticle Motion in Liquid Environments)

Abstract

The motion of nanoparticles in complex environments can provide us with a detailed understanding of interactions occurring at the molecular level. Liquid phase transmission electron microscopy (LPTEM) enables us to probe and capture the dynamic motion of nanoparticles directly in their native liquid environment, offering real time insights into nanoscale motion and interaction. However, linking motion to interactions to decode the underlying mechanisms of motion and interpret interactive forces at play is challenging, particularly when closed-form Langevin-based equations are not available to model the motion. Herein, we present LEONARDO, a deep generative model that leverages a physics-informed loss function and an attention-based transformer architecture to learn the stochastic motion of nanoparticles in LPTEM. We demonstrate that LEONARDO successfully captures statistical properties suggestive of the heterogeneity and viscoelasticity of the liquid cell environment surrounding the nanoparticles.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました