安定性と迅速強化を両立する自己強化ゲル材料の開発~計算・情報・実験の融合研究によって設計指針を提案~

ad

2025-07-11 北海道大学

北海道大学のWPI-ICReDDの研究チームは、熱や光に対する高い安定性と迅速な自己強化機能を持つ新たな自己強化ゲル材料を設計・実証しました。開発には、量子化学の自動反応経路探索技術(拡張 AFIR)と機械学習ポテンシャルを組み合わせ、ラジカル発生・寿命の両立を可能にする「ノード形状」をもつメカノフォア分子を予測。実際にその分子を含有するハイドロゲルでは、弱い力でラジカルが生成されつつ高い熱安定性も維持されることを実験で確認。得られた分子設計指針は、安定性と機械応答性を両立する新材料の設計に役立つものとして期待されます。本成果は『Chemical Science』(2025年7月10日オンライン)に掲載されました。

安定性と迅速強化を両立する自己強化ゲル材料の開発~計算・情報・実験の融合研究によって設計指針を提案~
本研究の手順の概要。拡張AFIR法と機械学習ポテンシャル技術を組み合わせた検討により、理解と予測に基づいて自己強化ゲル材料を開発した。

<関連情報>

「ノード形状」を有する熱安定メカノフォアによるダブルネットワーク材料における迅速な自己強化メカニズム “Node” facilitated thermostable mechanophores for rapid self-strengthening in double network materials

Julong Jiang, Zhi Jian Wang, Ruben Staub, Yu Harabuchi, Alexandre Varnek, Jian Ping Gong and  Satoshi Maeda
Chemical Science  Published:10 Jul 2025
DOI:https://doi.org/10.1039/D5SC00151J

Abstract

Mechanophores are force-sensitive compounds that undergo chemical reactions under force stimuli. The design and discovery of efficient yet thermally stable mechanophores are crucial for developing self-strengthening materials. However, conventional mechanophores are often chemically unstable due to the presence of highly strained rings or weak covalent bonds, making the material sensitive to the change of temperature or UV irradiation. In this study, a comprehensive computational exploration was conducted to discover thermally stable, unconventional mechanophores for self-strengthening materials based on mechanoradical polymerisation. Notably, the computational procedure presented here serves as a general strategy for designing mechanophores intended for various applications. First, a conformational motif called a “node” along the force transduction direction was identified, significantly enhancing the force effect. Molecules with bridged rings emerged as ideal candidates for possessing a “node,” as the bridged structure helps to fix the key dihedral angle. Simulations predicted that polymers containing camphanediol and pinanediol could readily undergo C–C bond homolysis under force. Subsequently, automated reaction path exploration revealed the fate of the mechanoradicals and suggested that camphanediol could generate long-lived radicals, a crucial feature for self-strengthening materials. Following these computational predictions, we successfully prepared double-network hydrogels containing the camphanediol moiety. Careful experiments were then performed to quantify the concentration of mechanoradicals, and enhanced self-strengthening performance was demonstrated through loading–unloading tests.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました