エネルギーとセンシングの可能性を広げる科学法則の再定義(Rewriting a scientific law to unlock the potential of energy, sensing and more)

ad

2025-06-20 ペンシルベニア州立大学 (PennState)

ペンシルベニア州立大学の研究チームは、キルヒホッフの熱放射法則を破る新しい材料構造を開発しました。従来、物質は同じ波長での吸収率と放射率が等しいとされていましたが、厚さ2μmの多層半導体薄膜を用い、特定波長で放射と吸収に0.43の非対称性を実現。これにより、熱エネルギーを一方向に制御する技術が可能となり、太陽光発電の熱効率向上や熱赤外線センサーなどへの応用が期待されます。この成果は熱物理やエネルギー分野の革新につながる可能性があります。

<関連情報>

強い非反復熱放射の観察 Observation of Strong Nonreciprocal Thermal Emission

Zhenong Zhang, Alireza Kalantari Dehaghi, Pramit Ghosh, and Linxiao Zhu
Physical Review Letters  Published: 30 June, 2025
DOI: https://doi.org/10.1103/PhysRevLett.135.016901

Abstract

The Kirchhoff’s law of thermal radiation stating the equivalence of emissivity and absorptivity at the same wavelength, angle, and polarization, has completely constrained emission and absorption processes. Achieving strong nonreciprocal emission points to fundamental advances for applications such as energy harvesting, heat transfer, and sensing, but strong nonreciprocal thermal emission has not been experimentally realized. Here, we observe strong nonreciprocal thermal emission using a custom-designed angle-resolved magnetic thermal emission spectroscopy and an epitaxially transferred gradient-doped metamaterial. We show that under magnetic field, the metamaterial strongly breaks Kirchhoff’s law, with a difference between emissivity and absorptivity at the same wavelength and angle reaching as high as 0.43. Significant nonreciprocal emission persists over broad spectral and angular ranges. The demonstration of strong nonreciprocal thermal emission and the approach can be useful for systematic exploration of nonreciprocal thermal photonics for thermal management, infrared camouflage, and energy conversion.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました