三電子で物質の法則に新たな光(Three electrons are enough: an unprecedented experiment sheds light on the laws of matter)

ad

2025-06-25 フランス国立科学研究センター(CNRS)

CNRSとグルノーブル・アルプ大学の研究者は、最大5個の電子を使った「ミニコライダー」実験により、わずか3個の電子でも強いクーロン相互作用による液体のような集団的振る舞いが生じることを実証した。これにより、従来は多数の粒子が必要とされていた相互作用の成立条件が覆された。5個の電子では、巨視的な電子系と同等の相関が観測され、極小スケールでも物質の性質が再現されることが示された。この成果は、物質の本質理解やナノ物理学に新たな視点を提供する。

<関連情報>

数電子液滴におけるクーロン液相の証拠 Evidence of Coulomb liquid phase in few-electron droplets

Jashwanth Shaju,Elina Pavlovska,Ralfs Suba,Junliang Wang,Seddik Ouacel,Thomas Vasselon,Matteo Aluffi,Lucas Mazzella,Clément Geffroy,Arne Ludwig,Andreas D. Wieck,Matias Urdampilleta,Christopher Bäuerle,Vyacheslavs Kashcheyevs & Hermann Sellier
Nature  Published:25 June 2025
DOI:https://doi.org/10.1038/s41586-025-09139-z

三電子で物質の法則に新たな光(Three electrons are enough: an unprecedented experiment sheds light on the laws of matter)

Abstract

Emergence of universal collective behaviour from interactions within a sufficiently large group of elementary constituents is a fundamental scientific concept1. In physics, correlations in fluctuating microscopic observables can provide key information about collective states of matter, such as deconfined quark–gluon plasma in heavy-ion collisions2 or expanding quantum degenerate gases3,4. Mesoscopic colliders, through shot-noise measurements, have provided smoking-gun evidence on the nature of exotic electronic excitations such as fractional charges5,6, levitons7 and anyon statistics8. Yet, bridging the gap between two-particle collisions and the emergence of collectivity9 as the number of interacting particles increases10 remains a challenging task at the microscopic level. Here we demonstrate all-body correlations in the partitioning of electron droplets containing up to N = 5 electrons, driven by a moving potential well through a Y-junction in a semiconductor device. Analysing the partitioning data using high-order multivariate cumulants and finite-size scaling towards the thermodynamic limit reveals distinctive fingerprints of a strongly correlated Coulomb liquid. These fingerprints agree well with a universal limit at which the partitioning of a droplet is predicted by a single collective variable. Our electron-droplet scattering experiments illustrate how coordinated behaviour emerges through interactions of only a few elementary constituents. Studying similar signatures in other physical platforms such as cold-atom simulators4,11 or collections of anyonic excitations8,12 may help identify emergence of exotic phases and, more broadly, advance understanding of matter engineering.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました