トポロジーAIを用いた触媒材料の逆設計(Pan Feng’s Team Advances Inverse Design of Catalytic Materials with Topological AI)

ad

2025-06-18 北京大学(PKU)

トポロジーAIを用いた触媒材料の逆設計(Pan Feng’s Team Advances Inverse Design of Catalytic Materials with Topological AI)PGH-VAEs Framework for Inverse Catalytic Site Design.

北京大学の潘峰教授らの研究チームは、触媒材料の逆設計を可能にする「トポロジーに基づく変分オートエンコーダ(PGH-VAEs)」フレームワークを開発し、npj Computational Materialsに発表した。本手法は、グラフ理論構造化学、代数的トポロジー、深層生成モデルを統合し、高精度かつ解釈可能な触媒活性点の設計を実現する。特に高エントロピー合金(HEAs)において、トポロジー記述子(例:Betti数)と吸着エネルギーの線形相関を明らかにし、最適な活性構造や組成比を予測。従来の試行錯誤的な手法に代わり、理論から合成へと繋がる新たな設計指針を提供する革新的な研究である。

<関連情報>

解釈可能なトポロジーに基づく深層生成モデルによる触媒活性部位の逆設計 Inverse design of catalytic active sites via interpretable topology-based deep generative models

Bingxu Wang,Shisheng Zheng,Jie Wu,Jingyan Li & Feng Pan
npj Computational Materials  Published:24 May 2025
DOI:https://doi.org/10.1038/s41524-025-01649-8

Abstract

The rational design of catalyst structures tailored to target performance is an ambitious and profoundly impactful goal. Key challenges include achieving refined representations of the three-dimensional structure of active sites and imbuing models with robust physical interpretability. Herein, we developed a topology-based variational autoencoder framework (PGH-VAEs) to enable the interpretable inverse design of catalytic active sites. Leveraging high-entropy alloys as a case, we demonstrate that persistent GLMY homology, an advanced topological algebraic analysis tool, enables the quantification of three-dimensional structural sensitivity and establishes correlations with adsorption properties. The multi-channel PGH-VAEs illustrate how coordination and ligand effects shape the latent space and influence the adsorption energies. Building on the inverse design results from PGH-VAEs, the strategies to optimize the composition and facet structures to maximize the proportion of optimal active sites are proposed. This interpretable inverse design framework can be extended to diverse systems, paving the way for AI-driven catalyst design.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました