宇宙望遠鏡「ローマン」が暗黒物質をより正確に探査へ(NASA’s Roman to Peer Into Cosmic ‘Lenses’ to Better Define Dark Matter)

ad

2025-06-12 NASA

宇宙望遠鏡「ローマン」が暗黒物質をより正確に探査へ(NASA’s Roman to Peer Into Cosmic ‘Lenses’ to Better Define Dark Matter)
Credit: NASA, Bryce Wedig (Washington University), Tansu Daylan (Washington University), Joseph DePasquale (STScI)

NASAの「ナンシー・グレース・ローマン宇宙望遠鏡」は、2027年に打ち上げられる予定で、ハッブルの100倍以上の視野を持つ高分解能の赤外線装置を搭載しています。ローマン望遠鏡は「強レンズ」と「弱レンズ」現象を同時に活用し、銀河団などによる光のゆがみを数十万件規模で観測することで、ダークマターの微小構造を高精度にマッピング可能になります。これにより、現在のダークマターモデルや宇宙論パラダイム、暗黒エネルギーの研究に決定的な貢献が期待されています。

<関連情報>

ローマン宇宙望遠鏡の強い重力レンズからの見え方 The Roman View of Strong Gravitational Lenses

Bryce Wedig, Tansu Daylan, Simon Birrer, Francis-Yan Cyr-Racine, Cora Dvorkin, Douglas P. Finkbeiner, Alan Huang, Xiaosheng Huang, Rahul Karthik, Narayan Khadka,…
The Astrophysical Journal  Published: 2025 June 5
DOI:10.3847/1538-4357/adc24f

Abstract

Galaxy–galaxy strong gravitational lenses can constrain dark matter models and the Lambda cold dark matter cosmological paradigm at subgalactic scales. Currently, there is a dearth of images of these rare systems with high signal-to-noise ratio (SNR) and angular resolution. The Nancy Grace Roman Space Telescope (hereafter Roman), scheduled for launch in late 2026, will play a transformative role in strong-lensing science with its planned wide-field surveys. With its remarkable 0.281 square degree field of view and diffraction-limited angular resolution of ~0.″1, Roman is uniquely suited to characterizing dark matter substructure from a robust population of strong lenses. We present a yield simulation of detectable strong lenses in Roman’s planned High Latitude Wide Area Survey (HLWAS). We simulate a population of galaxy–galaxy strong lenses across cosmic time with cold dark matter subhalo populations, select those detectable in the HLWAS, and generate simulated images accounting for realistic Wide Field Instrument detector effects. For a fiducial case of single 146 s exposures, we predict around 160,000 detectable strong lenses in the HLWAS, of which about 500 will have sufficient SNR to be amenable to detailed substructure characterization. We investigate the effect of variation of the point-spread function across Roman’s field of view on detecting individual subhalos and the suppression of the subhalo mass function at low masses. Our simulation products are available to support strong-lens science with Roman, such as training neural networks and validating dark matter substructure analysis pipelines.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました