スピン輸送を制御可能な新しい反強磁性体「X型」材料(New Class of “X-type” Antiferromagnets Enables Sublattice-selective Spin Transport)

ad

2025-06-10 中国科学院(CAS)

スピン輸送を制御可能な新しい反強磁性体「X型」材料(New Class of “X-type” Antiferromagnets Enables Sublattice-selective Spin Transport)
Different antiferromagnetic stacking. (Image by SHAO Dingfu)

中国科学院・合肥物質科学研究院の邵鼎富(SHao Dingfu)教授率いる研究チームは、スピントロニクス向けに革新的な特性を持つ新しい「X型反強磁性体(AFM)」を理論的に予測しました。この物質は、交差するチェーン構造を有し、サブ格子選択的なスピン輸送が可能で、従来の反強磁性体では困難だったスピン電流の精密制御を実現します。特に、電場の向きを変えることで一つの磁気サブ格子のみを通じてスピンを流すことができる点が特徴で、β-Fe₂PO₅は室温動作も可能とされ注目されています。この発見は、AFMの分類体系(G/A/C型)に新たなX型を加え、将来の低消費電力・高密度スピントロニクス素子の開発に寄与する可能性を示しています。

<関連情報>

クロスチェーン反強磁性体におけるX型スタッキング X-type stacking in cross-chain antiferromagnets

Shui-Sen Zhang ∙ Zi-An Wang ∙ Bo Li ∙ … ∙ Evgeny Y. Tsymbal ∙ Ding-Fu Shao
Newton  Published:April 11, 2025
DOI:https://doi.org/10.1016/j.newton.2025.100068

Accessible overview

Physical phenomena in condensed matter typically arise from the collective effects of all atoms in a solid, while selectively addressing a single atomic sublattice is elusive. A prime example is antiferromagnetic materials, which consist of two or more ferromagnetically ordered sublattices that neutralize each other, rendering the antiferromagnets inert to external stimuli. If one of these sublattices could be selectively addressed, it would open exciting opportunities for exploring new physics and spintronic applications. This work illustrates such a remarkable property by introducing X-type antiferromagnetic stacking, an uncharted class of magnetic stacking in which two magnetic sublattices form a pattern of intersecting atomic chains. The associated cross-chain antiferromagnets with X-type stacking, dubbed X-type antiferromagnets, enable one magnetic sublattice to conduct while the other acts as an insulator, effectively combining both properties within the same material. Consequently, passing an electric current through X-type antiferromagnets exerts spin torque solely on a single magnetic sublattice, enabling deterministic switching of the antiferromagnetic domains. This discovery paves the way for exploring novel fundamental physics related to sublattice selectivity and opens an avenue for realizing advanced spintronic functionalities with enhanced performance.

Highlights

•X-type stacking discovered in cross-chain antiferromagnets

•X-type antiferromagnets exhibit sublattice-selective spin-polarized transport

•Spin torques on a single sublattice for deterministic Néel vector switching

β-Fe2PO5 is a representative high-temperature X-type antiferromagnet

Summary

Physical phenomena in condensed matter normally arise from the collective effect of all atoms, while selectively addressing a lone atomic sublattice by external stimulus is elusive. The latter functionality may, however, benefit various applications, as the responses may differ when the external stimulus affects only a specific sublattice rather than the entire solid. Here, we introduce cross-chain antiferromagnets where the stacking of two magnetic sublattices forms a pattern of intersecting atomic chains, allowing for sublattice selectivity. We dub this antiferromagnetic (AFM) stacking X-type and demonstrate that it exhibits unique spin-dependent transport properties not present in conventional magnets. Through high-throughput analyses and computations, we unveil three prototypes of X-type AFM stacking and identify 15 X-type AFM candidates. Using β-Fe2PO5 as a representative X-type antiferromagnet, we predict sublattice-selective spin-polarized transport driven by the X-type stacking where one magnetic sublattice conducts, while the other does not. Consequently, a spin torque can be exerted solely on a single sublattice, leading to unconventional ultrafast dynamics of the Néel vector capable of deterministic switching of the AFM domains. Our work uncovers a previously overlooked type of magnetic moment stacking and reveals sublattice-selective physical properties promising for high-performance spintronic applications.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました