全固体電池のための新しい金属設計(A New Metal Design for Solid-State Batteries)

ad

2025-06-05 ジョージア工科大学

ジョージア工科大学の研究チームは、固体電池におけるリチウム金属と電解質の接触維持に必要な圧力を大幅に軽減する新手法を開発しました。従来は重量・体積を増やす大型加圧構造が必要でしたが、本研究では柔らかいナトリウム金属を併用することで、低圧でも接触を保ち、高い性能を維持可能にしました。この設計は、生物の「形形成(morphogenesis)」に着想を得ており、ナトリウムの可塑性を活かしてリチウムとの界面を動的に補完する仕組みです。この成果により、軽量・小型で安全性の高い次世代固体電池の実用化が一歩前進しました。

<関連情報>

固体リチウム電池における変形可能な二次相を用いた界面形態形成 Interface morphogenesis with a deformable secondary phase in solid-state lithium batteries

Sun Geun Yoon, Bairav S. Vishnugopi, Douglas Lars Nelson, Adrian Xiao Bin Yong, […] , and Matthew T. McDowell
Science  Published:5 Jun 2025
DOI:https://doi.org/10.1126/science.adt5229

Editor’s summary

A challenge for lithium solid-state batteries is the formation of voids at the lithium-electrolyte interface as the battery is cycled because the loss of interfacial contact degrades battery performance. The typical solution to this problem is to apply a stack pressure to deform the lithium, but the pressures required become unfeasible. Yoon et al. eliminated the need for high pressure by alloying the lithium with up to 20% sodium (see the Perspective by Spencer-Jolly). Because the sodium is immiscible, it forms domains within the lithium microstructure. However, it is also a good conductor, so the accumulation at the solid electrolyte interface ensures good electrical contact but it will still move away from the interface as the lithium plates out during charging. —Marc S. Lavine

Abstract

The complex morphological evolution of lithium metal at the solid-state electrolyte interface limits performance of solid-state batteries, leading to inhomogeneous reactions and contact loss. Inspired by biological morphogenesis, we developed an interfacial self-regulation concept in which a deformable secondary phase dynamically aggregates at the interface in response to local electro-chemo-mechanical stimuli, enhancing contact. The stripping of a lithium electrode that contains 5 to 20 mole % electrochemically inactive sodium domains causes spontaneous sodium accumulation across the interface, with the sodium deforming to attain intimate electrical contact without blocking lithium transport. This process, characterized with operando x-ray tomography and electron microscopy, mitigates voiding and improves cycling at low stack pressures. The counterintuitive strategy of adding electrochemically inactive alkali metal to improve performance demonstrates the utility of interfacial self-regulation for solid-state batteries.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました