量子と神経モデルに基づく新しい最適化アルゴリズム(A neuro-quantum leap in finding optimal solutions)

ad

2025-05-01 ワシントン大学セントルイス校

ワシントン大学セントルイス校のチャクラバルティ教授らが開発した「NeuroSA」は、神経生物学に基づく新しい問題解決アーキテクチャです。ニューロモルフィック構造と量子トンネル効果を用いたフォウラー=ノードハイム(FN)アニーラーを統合し、従来手法では困難だった複雑な最適化問題に対応可能です。物流や創薬などの分野における「発見問題」の解決にも応用が期待されます。この技術はSpiNNcloud Systemsの「SpiNNaker2」で実装され、成果は『Nature Communications』に掲載されました。

<関連情報>

Fowler-Nordheimアニーラーを用いたON-OFF型ニューロモルフィックISINGマシン ON-OFF neuromorphic ISING machines using Fowler-Nordheim annealers

Zihao Chen,Zhili Xiao,Mahmoud Akl,Johannes Leugring,Omowuyi Olajide,Adil Malik,Nik Dennler,Chad Harper,Subhankar Bose,Hector A. Gonzalez,Mohamed Samaali,Gengting Liu,Jason Eshraghian,Riccardo Pignari,Gianvito Urgese,Andreas G. Andreou,Sadasivan Shankar,Christian Mayr,Gert Cauwenberghs & Shantanu Chakrabartty
Nature Communications  Published:31 March 2025
DOI:https://doi.org/10.1038/s41467-025-58231-5

量子と神経モデルに基づく新しい最適化アルゴリズム(A neuro-quantum leap in finding optimal solutions)

Abstract

We introduce NeuroSA, a neuromorphic architecture specifically designed to ensure asymptotic convergence to the ground state of an Ising problem using a Fowler-Nordheim quantum mechanical tunneling based threshold-annealing process. The core component of NeuroSA consists of a pair of asynchronous ON-OFF neurons, which effectively map classical simulated annealing dynamics onto a network of integrate-and-fire neurons. The threshold of each ON-OFF neuron pair is adaptively adjusted by an FN annealer and the resulting spiking dynamics replicates the optimal escape mechanism and convergence of SA, particularly at low-temperatures. To validate the effectiveness of our neuromorphic Ising machine, we systematically solved benchmark combinatorial optimization problems such as MAX-CUT and Max Independent Set. Across multiple runs, NeuroSA consistently generates distribution of solutions that are concentrated around the state-of-the-art results (within 99%) or surpass the current state-of-the-art solutions for Max Independent Set benchmarks. Furthermore, NeuroSA is able to achieve these superior distributions without any graph-specific hyperparameter tuning. For practical illustration, we present results from an implementation of NeuroSA on the SpiNNaker2 platform, highlighting the feasibility of mapping our proposed architecture onto a standard neuromorphic accelerator platform.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました