超伝導ナノ構造を3Dで解析(Superconducting nanostructures in 3D)

ad

2025-04-24 マックス・プランク研究所(MPG)

超伝導ナノ構造を3Dで解析(Superconducting nanostructures in 3D)

Scanning electron microscope image of a three dimensional superconducting nanostructure (nanobridge) deposited using direct-write 3D nanoprinting. © MPI CPfS / E. Zhakina

マックス・プランク固体化学物理研究所(MPI CPfS)の研究チームは、ナノスケールで超伝導状態を局所的に制御可能な3次元超伝導ナノ構造を開発しました。この構造は、ナノ3Dプリンター技術を用いて作製され、磁場中での構造の回転によって、特定の領域の超伝導状態をオン・オフ切り替えることが可能です。これにより、超伝導状態と通常状態の共存が実現し、超高感度センサーや再構成可能な超伝導デバイスの開発に新たな道を開きます。さらに、超伝導状態の欠陥であるボルテックスの3次元的な動きも観察され、将来的には神経形態的アーキテクチャや量子論理回路への応用が期待されています。この成果は、超伝導技術の柔軟な設計と機能性向上に貢献するものです。

​<関連情報>

再構成可能な3次元超伝導ナノアーキテクチャー Reconfigurable Three-Dimensional Superconducting Nanoarchitectures

Elina Zhakina, Luke Alexander Turnbull, Weijie Xu, Markus König, Paul Simon, Wilder Carrillo-Cabrera, Amalio Fernández-Pacheco, Uri Vool, Dieter Suess, Claas Abert, Vladimir M. Fomin, Claire Donnelly
Advanced Functional Materials  Published: 11 April 2025
DOI:https://doi.org/10.1002/adfm.202506057

Abstract

When materials are patterned in 3D, there exist opportunities to tailor and create functionalities associated with an increase in complexity, the breaking of symmetries, and the introduction of curvature and non-trivial topologies. For superconducting nanostructures, the extension to the third dimension triggers the emergence of new physical phenomena, and lead to advances in technologies. Here, 3D nanopatterning is harnessed to fabricate and control the emergent properties of a 3D superconducting nanostructure. Not only are the existence and motion of superconducting vortices demonstrated in 3D but, with numerical simulations, it is shown that the confinement leads to well-defined bending of the vortices within the volume of the structure. This 3D confinement manifests experimentally in a strong geometrical anisotropy of the critical field, through which the reconfigurable coexistence of superconducting and normal states in the 3D superconducting architecture, and the local definition of weak links, are achieved. In this way, an intermediate regime of nanosuperconductivity is uncovered, where the vortex state is truly 3D and can be designed and manipulated by geometrical confinement. This insight into the influence of 3D geometries on superconducting properties offers a route to local reconfigurable control for future computing devices, sensors, and quantum technologies.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました