ゼロバックグラウンド蛍光プローブで精密なヒドラジン検出を実現(Researchers Develop Zero-background Fluorescence Probe for Precise Hydrazine Detection)

ad

2025-04-23 中国科学院(CAS)

ゼロバックグラウンド蛍光プローブで精密なヒドラジン検出を実現(Researchers Develop Zero-background Fluorescence Probe for Precise Hydrazine Detection)

Image by the research group

中国科学院新疆理化技術研究所の竇新存教授らは、ヒドラジン(N₂H₄)を超高感度かつ高選択的に検出できるゼロバックグラウンド蛍光プローブを開発した。電子受容性とプロトン供与体の精密配置により、選択的なESIPT機構による蛍光オン反応を実現。特にm-Br-OH-BDMNプローブは0.46 nMの検出限界、1秒以内の高速応答、高い選択性を示し、シリコン多孔質材料によるターゲット濃縮技術も提案された。この技術は水質汚染物質の迅速検出にも貢献が期待される。

<関連情報>

電子受容強度の制御によるヒドラジンの超高感度・特異的検出のためのゼロ蛍光プローブ Zero- Fluorescence Probe for Ultrasensitive and Specific Detection of Hydrazine by Regulating the Electron-Accepting Strength

Fang Xiao,Jiahao Dong,Rongchao Zhu,Huazangnaowu Bai,Chuanfang Zhao,Baiyi Zu,Yincang Cui,and Zhenzhen Cai
Analytical Chemistry  Published: April 15, 2025
DOI:https://doi.org/10.1021/acs.analchem.5c00343

Abstract

The introduction of an excited-state intramolecular proton transfer (ESIPT) process is of great significance for the design of zero-background fluorescent probes with specific functionalities. Here, based on the nucleophilic attack characteristics of N2H4, a series of BDMN-based probes with dicyanoethylene as the recognition site were designed by regulating the electron-accepting ability of para-substituent of the dicyanoethylene and the relative position of the hydroxyl group and dicyanoethylene. It is found that a stronger electron-accepting capability could greatly improve the reactivity of the recognition site, and only when the hydroxyl group is in the ortho-substituent of the recognition site, the probe could react with N2H4 to generate hydrazone as a proton acceptor, producing the ESIPT process and the blue-green fluorescence emission. The probe m-Br–OH-BDMN with Br as the electron-accepting group has better detection performance for N2H4, with low limit of detection (LOD, 0.46 nM), fast response (1 s), and superior selectivity even in the presence of 18 kinds of interferents. Furthermore, the practicability of the probe design strategy was further verified by the construction of a m-Br–OH-BDMN loaded silicon-based porous sensor, realizing the specific identification of N2H4 vapor. The present nonfluorescent probe design strategy would provide new thoughts for the rational design of functional probes as well as high-performance sensing methodologies.

1102水質管理
ad
ad
Follow
ad
タイトルとURLをコピーしました