プラスチックより植物:持続可能な包装をより耐久性のあるものにし、プラスチックよりも安価でエネルギー効率の高い代替品(Plants over plastics:Researchers make sustainable packaging more durable, offering a less-expensive, energy-efficient alternative to plastic.)

ad

2025-04-17 バージニア工科大学(VirginiaTech)

バージニア工科大学の研究チームは、食品廃棄物を原料とする生分解性バイオプラスチック「PHA(ポリヒドロキシアルカノエート)」の製造技術を開発している。微生物を用いて廃棄物から脂質を生成し、それをバイオプラスチックへと変換するモジュール式バイオプロセスを構築。PHAは海洋環境でも分解可能で、マイクロプラスチック問題の解決に貢献が期待される。また、別プロジェクトでは低圧処理によってセルロース包装材の構造を強化し、ガスバリア性や透明性を向上させる技術も開発。これらの成果は持続可能な包装資材の商用化に向けた大きな前進とされている。

<関連情報>

持続可能な包装フィルム材料としてのセルロースナノフィブリル(CNF)に対する新しい低圧ホモジナイゼーションプロセスのサイクルの影響 Impacts of cycles of a novel low-pressure homogenization process on cellulose nanofibrils (CNF) as a sustainable packaging film material

Belladini Lovely, Young-Teck Kim, Haibo Huang, Audrey Zink-Sharp, Maren Roman
Carbohydrate Polymer Technologies and Applications  Available online: 4 March 2025
DOI:https://doi.org/10.1016/j.carpta.2025.100739

プラスチックより植物:持続可能な包装をより耐久性のあるものにし、プラスチックよりも安価でエネルギー効率の高い代替品(Plants over plastics:Researchers make sustainable packaging more durable, offering a less-expensive, energy-efficient alternative to plastic.)

Abstract

Cellulose nanofibrils (CNF) have been among the most researched materials for their myriad advantages, yet are still facing challenges toward advanced developments due to their natural hydrophilicity affecting a broad range of properties. A simple, mildly-conditioned (low pressure at 7 MPa, for 0–25 cycles) homogenization approach was explored, and its effects on the Northern bleached softwood based-CNF films’ functional properties were investigated. Post-homogenization, promoted hydrogen bonding and fibrillation were evidenced by FTIR and surface SEM, respectively. A maintained high crystallinity (64 %) and smoother surface of homogenized CNF films (Sa, 2.64 from 4.73 μm) compared to the untreated CNF films was also achieved. The resulting decrease in oxygen permeability (0.25 from 0.48 cc.μm/m2.day.kPa, at 50 %RH) is comparable to the reference values of the commercial oxygen barrier resin brand of ethylene-vinyl alcohol (EVOH). Significant improvements in mechanical (tensile strength, 157 from 94 MPa; Young’s modulus, 3843 from 2630 MPa; and elongation-at-break, 7.59 from 5.69 %) and thermal (elastic modulus, loss modulus, damping factor, and degradation temperature) properties were confirmed. Contact angle improvement (0–60 s) was also obtained. With varying optimum homogenization cycles, this work demonstrates the prospect of a straightforward, cheap, and environmentally friendly approach in modifying CNF with enhanced processability and applicability for diverse applications.

0504高分子製品
ad
ad
Follow
ad
タイトルとURLをコピーしました