隠れた銀河が宇宙の謎を解明する鍵になる可能性(Hidden galaxies could answer key questions about our Universe)

ad

2025-04-10 英国研究イノベーション機構(UKRI)

英国の科学技術施設会議(STFC)とインペリアル・カレッジ・ロンドンの研究チームは、ハーシェル宇宙望遠鏡のSPIRE装置による141回の観測データを重ね合わせ、遠赤外線波長での宇宙最深部の画像「Herschel-SPIRE Dark Field」を作成しました。この画像には約2,000の遠方銀河が写っており、これらの「隠れた銀河」が宇宙の赤外線背景光の起源となっている可能性が示唆されています。宇宙のエネルギーの約半分は、星の光が塵によって吸収され、赤外線として再放射されたものであるため、これらの観測は宇宙の進化を理解する上で重要です。研究成果は『Monthly Notices of the Royal Astronomical Society』に掲載されました。

<関連情報>

Herschel-SPIREダークフィールドI:サブミリメートル宇宙の最も深いハーシェル画像 The Herschel-SPIRE Dark Field I: the deepest Herschel image of the submillimetre Universe

Chris Pearson, Thomas W O Varnish, Xinni Wu, David L Clements, Ayushi Parmar, Helen Davidge, Matthew Pearson
Monthly Notices of the Royal Astronomical Society  Published:10 April 2025
DOI:https://doi.org/10.1093/mnras/staf335

隠れた銀河が宇宙の謎を解明する鍵になる可能性(Hidden galaxies could answer key questions about our Universe)

ABSTRACT

We present the image maps, data reduction, analysis, and the first source counts from the Herschel SPIRE Dark Field. The SPIRE Dark Field is an area of sky near the North Ecliptic Pole observed many times during the calibration phase of the Herschel mission in order to characterize the stability of the SPIRE (Spectral and Photometric Imaging Receiver) instrument and is subsequently one of the deepest imaged fields of the Universe at far-infrared-submillimetre wavelengths. The SPIRE dark field is concurrent with the Spitzer Infrared Array Camera Dark Field used for a similar purpose. The final Dark Field map is comprised of 141 individual SPIRE observations in Small Map and Large Map modes defined by a deep inner region approximately 12 arcmin in diameter and a slightly shallower surrounding area of diameter∼30arcmin⁠. The depth of both regions reach well below the confusion limit of the SPIRE instrument at 250, 350, and 500μm. Two independent processes are used to extract sources, a standard map based method using the SUSSEXtractor algorithm and a list driven photometry approach using the XID (cross identification) algorithm with the Spitzer MIPS (Multiband Imaging Photometer for Spitzer) 24μm catalogue as an input prior. The resulting source counts detect the turnover in the galaxy population with both methods shown to be consistent with previous results from other Herschel surveys, with the XID process reaching approximately twice as deep compared to traditional map based algorithms. Finally, we compare our results with two contemporary galaxy evolution models, again showing a good general agreement with the modelled counts.

 

Herschel-SPIREダークフィールド – II. サブミリメートル宇宙の最深部ハーシェル像のP(D)揺らぎ解析 The Herschel-SPIRE Dark Field – II. A P(D) fluctuation analysis of the deepest Herschel image of the submillimetre universe

Thomas W O Varnish, Xinni Wu, Chris Pearson, David L Clements, Ayushi Parmar
Monthly Notices of the Royal Astronomical Society  Published:10 April 2025
DOI:https://doi.org/10.1093/mnras/staf318

P(D) results. Top row: Comparison between observed pixel flux distribution (black histogram) with flux distribution predicted by the (Negrello et al. 2017) model (red curve). Bottom row: Comparison with the best-fitting splines presented in this paper.

ABSTRACT

The Herschel-SPIRE Dark Field is the deepest field produced by the SPIRE instrument pushing down below the galaxy confusion limit in each of the 250, 350, 500 μm bands. Standard source extraction techniques inevitably fail because of this, and we must turn to statistical methods. Here, we present a P(D)  – probability of deflection – analysis of a 12′ diameter region of uniform coverage at the centre of the Herschel-SPIRE Dark Field. Comparing the distribution of pixel fluxes from our observations to the distributions predicted by current literature models, we find that none of the most recent models can accurately recreate our observations. Using a P(D) analysis, we produce a fitted differential source count spline with a bump in the source counts at faint flux densities, followed by a turnover at fainter fluxes, required to fit the observations. This indicates a possible missing component from the current literature models that could be interpreted perhaps as a new population of galaxies, or a missing aspect of galaxy evolution. Taking our best-fitting results, we also calculate the contribution to the cosmic infrared background (CIB) in each of the bands, which all agree with the Planck CIB measurements in this field.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました