単一の触媒粒子をリアルタイムで観察(Researchers Watch a Single Catalytic Grain Do Work in Real Time)

ad

2025-04-07 ワシントン州立大学 (WSU)

ワシントン州立大学と米エネルギー省のパシフィック・ノースウェスト国立研究所(PNNL)の研究チームは、触媒反応を分子レベルでリアルタイム観察できる新技術を開発しました。鉄と酸素の反応を観察し、どの結晶面が最も反応に適し、電場が酸化をどう制御するかを明らかにしました。特に、電場を利用することで鉄の酸化(さび)を抑制し、触媒反応を継続させることに成功。この技術は、従来の経験則に頼る触媒設計から脱却し、安価で持続可能な新しい触媒の開発を促進すると期待されています。

<関連情報>

環境アトムプローブによる鉄酸化における電場の役割の解明 Elucidating the Role of Electric Fields in Fe Oxidation via an Environmental Atom Probe

Dr. Sten V. Lambeets, Naseeha Cardwell, Dr. Isaac Onyango, Mark G. Wirth, Eric Vo, Prof. Yong Wang, Prof. Pierre Gaspard, Prof. Cornelius F. Ivory, Dr. Daniel E Perea …
Angewandte Chemie International Edition  Published:17 February 2025
DOI:https://doi.org/10.1002/anie.202423434

Graphical Abstract

Field-Assisted Fe Oxidation imaged by Environmental Atom Probe. The oxidation of iron (Fe) at the tip of a sharp needle under high electrostatic fields has been visualized using an Environmental Atom Probe (EAP) and corroborated through Density Functional Theory (DFT) calculations and a mean-field model applied to a multi-faceted catalytic grain, alongside statistical-mechanical analyses. EAP observations underscore the impact of surface structures, revealing that Fe oxidation predominantly occurs on exposed facets such as Fe{244} and Fe{112}, while facets with higher coordination numbers like Fe{024}, Fe{013}, and Fe{011} exhibit comparatively lower levels of oxidation. Intense electrostatic fields exert a significant influence on Fe oxidation by polarizing and attracting gas molecules toward the surface, thereby effectively raising the local pressure via enhanced electric field concentrations at the tip‘s apex.

単一の触媒粒子をリアルタイムで観察(Researchers Watch a Single Catalytic Grain Do Work in Real Time)

Abstract

We quantify the effects of intensely applied electric fields on the Fe oxidation mechanism. The specimen are pristine Fe single crystals exposing a variety of surface structures identified by field ion microscopy. These crystals are simultaneously exposed to low pressures of pure oxygen gas, on the order of 10−7 mbar, while applying intense electric fields on their surface of several tens of volts per nanometer. The local composition of the different surface structures is probed directly and in real time using an Environmental Atom Probe and successfully compared with first principles-based models. We found that rough Fe{244} and Fe{112} facets are more reactive toward oxygen than compact Fe{024} and Fe{011} facets. Results demonstrate that the influence of an electric field on the oxidation kinetics depends on the timescales that are involved as the system evolves toward equilibrium. The initial oxidation kinetics show that strong increases in electric fields facilitate the formation of an oxide. However, as one approaches equilibrium, high field values mitigate this formation. Ultimately, this study elucidates how high externally applied electric fields can be used to dynamically exploit reaction dynamics at the nanoscale towards desired products in a catalytic reaction at mild reaction conditions.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました