グラフェンによる軌道混成の新展開(Quantum leap: graphene unlocks orbital hybridization)

ad

2025-03-19 北京大学(PKU)

北京大学の孫慶峰教授らと北京師範大学の研究チームは、グラフェンを用いた人工原子で初めて「軌道ハイブリッド化」を実現しました。これは、実原子に見られる異なる軌道間の結合現象で、従来の量子ドットでは再現されていなかったものです。研究では、円形ポテンシャルを楕円形に変形し、s軌道とd軌道間のハイブリッド化を観測しました。理論と実験の両面で検証され、この成果は量子技術やナノエレクトロニクスの新たな基盤になると期待されます。

<関連情報>

グラフェン人工原子における軌道ハイブリダイゼーション Orbital hybridization in graphene-based artificial atoms

Yue Mao,Hui-Ying Ren,Xiao-Feng Zhou,Hao Sheng,Yun-Hao Xiao,Yu-Chen Zhuang,Ya-Ning Ren,Lin He & Qing-Feng Sun
Nature  Published:26 February 2025
DOI:https://doi.org/10.1038/s41586-025-08620-z

グラフェンによる軌道混成の新展開(Quantum leap: graphene unlocks orbital hybridization)

Abstract

Intra-atomic orbital hybridization and interatomic bond formation are the two fundamental processes when real atoms are condensed to form matter. Artificial atoms mimic real atoms by demonstrating discrete energy levels attributable to quantum confinement. As such, they offer a solid-state analogue for simulating intra-atomic orbital hybridization and interatomic bond formation. Signatures of interatomic bond formation have been extensively observed in various artificial atoms. However, direct evidence of the intra-atomic orbital hybridization in the artificial atoms remains to be experimentally demonstrated. Here we realize the orbital hybridization in artificial atoms by altering the shape of the artificial atoms. The anisotropy of the confining potential gives rise to the hybridization between quasibound states with different orbital quantum numbers within the artificial atom. These hybridized orbits are directly visualized in real space in our experiment and are well reproduced by both numerical calculations and analytical derivations. Our study opens an avenue for designing artificial matter that cannot be accessed on real atoms through experiments. Moreover, the results obtained inspire the progressive control of quantum states in diverse systems.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました