植物成長の燃料となるリンの解明(Unlocking phosphorus to fuel plant growth)

ad

2025-03-04 ノースウェスタン大学

ノースウェスタン大学の研究者たちは、鉄酸化物が有機リンを無機リンに変換する効率的な触媒として機能し、その反応速度は酵素と同程度であることを発見しました。 従来、土壌中の鉄酸化物はリンの「貯蔵庫」と見なされていましたが、この研究により、鉄酸化物が植物に利用可能なリンの供給源として重要な役割を果たすことが明らかになりました。この発見は、農業土壌におけるリンの循環を最適化し、肥料の使用効率を高める可能性があります。

<関連情報>

酸化鉄鉱物による酵素模倣リボヌクレオチド脱リン酸化の触媒パラメータの定量的ベンチマーク Quantitative Benchmarking of Catalytic Parameters for Enzyme-Mimetic Ribonucleotide Dephosphorylation by Iron Oxide Minerals

Jade J. Basinski,Sharon E. Bone,Aurore Niyitanga Manzi,Nasrin Naderi Beni,Fernando R. Tobias,Marcos Sanchez,Cynthia X. Cheng,Wiriya Thongsomboon,and Ludmilla Aristilde,
Environmental Science & Technology  Published: March 4, 2025
DOI:https://doi.org/10.1021/acs.est.4c12049

Abstract

植物成長の燃料となるリンの解明(Unlocking phosphorus to fuel plant growth)

Iron oxides, which are documented phosphorus (P) sinks as adsorbents, have been shown to catalyze organic P dephosphorylation, implicating these minerals as catalytic traps in P cycling. However, quantitative evaluation of this abiotic catalysis is lacking. Here, we investigated the dephosphorylation kinetics of eight ribonucleotides, with different nucleobase structures and P stoichiometry, reacting with common iron oxides. X-ray absorption spectroscopy determined that 0–98% of mineral-bound P was recycled inorganic P (Pi). Matrix-assisted laser desorption/ionization with mass spectrometry demonstrated short-lived triphosphorylated and monophosphorylated ribonucleotides bound to goethite. Based on Michaelis-Menten type modeling of the kinetic evolution of both dissolved and mineral-bound Pi, maximal Pi production rates from triphosphorylated ribonucleotides reacted with goethite (1.9–16.1 μmol Pi h–1 ggoethite–1) were >5-fold higher than with hematite and ferrihydrite; monophosphorylated ribonucleotides generated only mineral-bound Pi at similar rates (0.0–12.9 μmol Pi h–1 gmineral–1) across minerals. No clear distinction was observed between purine-based and pyrimidine-based ribonucleotides. After normalization to mineral-dependent Pi binding capacity, resulting catalytic turnover rates implied surface chemistry-controlled reactivity. Ribonucleotide–mineral complexation mechanisms were identified with infrared spectroscopy and molecular modeling. We estimated iron oxide-catalyzed rates in soil (0.01–5.5 μmol Pi h–1 gsoil) comparable to reported soil phosphatase rates, highlighting both minerals and enzymes as relevant catalysts in P cycling.

1200農業一般
ad
ad
Follow
ad
タイトルとURLをコピーしました