宇宙線の巨大なエネルギーの源に関する新発見(A New Discovery About the Source of the Vast Energy in Cosmic Rays)

ad

2024-12-10 コロンビア大学

コロンビア大学の研究者らは、超高エネルギー宇宙線のエネルギー源が、これまで考えられていた衝撃波ではなく、磁気乱流である可能性を示しました。従来、超新星爆発などの極限的な天体現象による衝撃波が宇宙線を加速すると考えられていましたが、新たな研究では、磁場が絡み合い急速に粒子を加速することで、宇宙線が高エネルギーを獲得することが示唆されています。この発見は、宇宙線の起源や加速メカニズムに関する長年の疑問を解明する手がかりとなり、天体物理学や素粒子物理学の進展に寄与することが期待されています。

<関連情報>

超高エネルギー宇宙線は磁気的乱流によって加速される Ultra-High-Energy Cosmic Rays Accelerated by Magnetically Dominated Turbulence

Luca Comisso, Glennys R. Farrar, and Marco S. Muzio
The Astrophysical Journal Letters  Published: 2024 December 4
DOI:10.3847/2041-8213/ad955f

宇宙線の巨大なエネルギーの源に関する新発見(A New Discovery About the Source of the Vast Energy in Cosmic Rays)

Abstract

Ultra-high-energy cosmic rays (UHECRs), particles characterized by energies exceeding 1018 eV, are generally believed to be accelerated electromagnetically in high-energy astrophysical sources. One promising mechanism of UHECR acceleration is magnetized turbulence. We demonstrate from first principles, using fully kinetic particle-in-cell simulations, that magnetically dominated turbulence accelerates particles on a short timescale, producing a power-law energy distribution with a rigidity-dependent, sharply defined cutoff well approximated by the form fcut(E,Ecut)=sech[(E/Ecut)2]. Particle escape from the turbulent accelerating region is energy dependent, with tescEδ and δ ∼ 1/3. The resulting particle flux from the accelerator follows dN/dEdtEssech[(E/Ecut)2], with s ∼ 2.1. We fit the Pierre Auger Observatory’s spectrum and composition measurements, taking into account particle interactions between acceleration and detection, and show that the turbulence-associated energy cutoff is well supported by the data, with the best-fitting spectral index being s=2.1+0.06−0.13. Our first-principles results indicate that particle acceleration by magnetically dominated turbulence may constitute the physical mechanism responsible for UHECR acceleration.

完全運動論的プラズマ乱流におけるイオンと電子の加速 Ion and Electron Acceleration in Fully Kinetic Plasma Turbulence

Luca Comisso and Lorenzo Sironi
The Astrophysical Journal Letters  Published: 2022 September 13
DOI:10.3847/2041-8213/ac8422

Figure 1. Refer to the following caption and surrounding text.

Abstract

Turbulence is often invoked to explain the origin of nonthermal particles in space and astrophysical plasmas. By means of 3D fully kinetic particle-in-cell simulations, we demonstrate that turbulence in low-β plasmas (β is the ratio of plasma pressure to magnetic pressure) accelerates ions and electrons into a nonthermal energy distribution with a power-law energy range. The ion spectrum is harder than the electron one, and both distributions get steeper for higher β. We show that the energization of electrons is accompanied by a significant energy-dependent pitch-angle anisotropy, with most electrons moving parallel to the local magnetic field, while ions stay roughly isotropic. We demonstrate that particle injection from the thermal pool occurs in regions of high current density. Parallel electric fields associated with magnetic reconnection are responsible for the initial energy gain of electrons, whereas perpendicular electric fields control the overall energization of ions. Our findings have important implications for the origin of nonthermal particles in space and astrophysical plasmas.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました