磁場を利用してバッテリーの長期老化を探る新しい技術(Novel technique uses magnetic fields to probe long-term aging in batteries)

ad

2024-10-31 アルゴンヌ国立研究所(ANL)

米アルゴンヌ国立研究所は、核磁気共鳴(NMR)分光法を用いて、商用バッテリーの長期劣化を運用中に非破壊で観察する新手法を開発しました。特に、シリコンアノード内でリチウムが蓄積・反応し、劣化が進む過程が可視化され、バッテリーの性能低下の要因が解明されました。さらに、電解液にマグネシウム塩を加えることで劣化を抑制できる可能性も示唆され、この技術は他の新興バッテリーにも応用が期待されています。

<関連情報>

リチウムイオン電池用ナノ粒子シリコン負極のサイクルおよびカレンダーエージングによるオペランドNMR特性評価 Operando NMR characterization of cycled and calendar aged nanoparticulate silicon anodes for Li-ion batteries

Evelyna Wang, Marco-Tulio F. Rodrigues, Sohyun Park, Fulya Dogan, Baris Key
Journal of Power Sources  Available online: 10 April 2024
DOI:https://doi.org/10.1016/j.jpowsour.2024.234477

Graphical abstract

磁場を利用してバッテリーの長期老化を探る新しい技術(Novel technique uses magnetic fields to probe long-term aging in batteries)

Highlights

  • Non-destructive operando NMR for commercially relevant pouch cells.
  • Over-lithiated Li15+xSi4 (x < 0.6) is directly formed in nanoparticulate Si.
  • Capacity fade attributed to trapped lithium silicides after long-term aging.
  • Mg (TFSI)2 additive decreases trapped lithium silicides after long-term aging.

Abstract

Replacing graphite anodes with Si anodes can greatly increase the energy of current Li-ion batteries. Detailed characterization of Si lithiation reactions, SEI formation, and reversibility are therefore active areas of research. Solid-state 7Li nuclear magnetic resonance (NMR) spectroscopy is useful for characterizing different lithium local environments within Si anodes. Here, we developed an operando NMR methodology to characterize aging of carbon-coated nanoparticulate Si anodes in pouch cells paired with Ni-rich cathodes. We observed a new lithiation mechanism in the Si nanoparticles: direct formation of over-lithiated Li15+xSi4 (x < 0.6) phase. Furthermore, our novel operando cells maintained good performance with long-term cycle and calendar aging. We identified trapped lithium silicides as a major contributor to capacity fade with aging. Finally, we determined that the addition of Mg (TFSI)2 to the electrolyte decreased the amount of trapped lithium silicides and therefore increased the capacity and capacity retention for the nanoparticulate Si used.

0400電気電子一般
ad
ad
Follow
ad
タイトルとURLをコピーしました