有機太陽電池のエネルギー損失と界面を関連付けることで、太陽電池の効率が大幅に向上する可能性(Linking Energy Loss to Interfaces in Organic Solar Cells Could Make Them Much More Efficient)

ad

2024-10-30 ノースカロライナ州立大学(NCState)

ノースカロライナ州立大学の研究者は、有機太陽電池の効率を向上させるため、電力変換に関わる界面でのエネルギー損失の要因を特定する新手法を開発しました。有機太陽電池は低コスト・軽量・柔軟性に優れる一方、変換効率が低く、その主な原因が「ドナー」と「アクセプター」材料間の界面での電圧損失にあると判明しました。研究チームは製造工程を改善することで損失を最小化し、設計指針を示しました。

<関連情報>

有機太陽電池の界面エネルギーランドスケープをマッピングすることで、非放射損失低減の道筋が明らかになる Mapping the interfacial energetic landscape in organic solar cells reveals pathways to reducing non-radiative losses

Gaurab J. Thapa∙ Mihirsinh Chauhan∙ Jacob P. Mauthe∙ Daniel B. Dougherty∙ Aram Amassian
Matter  Published:October 30, 2024
DOI:https://doi.org/10.1016/j.matt.2024.10.007

Graphical abstract

有機太陽電池のエネルギー損失と界面を関連付けることで、太陽電池の効率が大幅に向上する可能性(Linking Energy Loss to Interfaces in Organic Solar Cells Could Make Them Much More Efficient)

Progress and potential

Organic photovoltaics (OPVs) currently suffer from high non-radiative voltage loss (ΔVnr), which may limit them from far exceeding 20% efficiency. Disorder and energy offsets at donor/acceptor (D/A) interfaces play a crucial role in minimizing the ΔVnr, but there are multiple types of D/A interfaces present in OPV active layers, which occludes current understanding of voltage losses. In this work, we combine optoelectronic measurements with local tunneling spectroscopy to identify the D/A interface relevant to ΔVnr. We measure the electronic band edge distribution to infer interfacial charge transfer (CT) state properties of the D/A interface. This delineates the influences of CT state disorder and its hybridization with the singlet state on the ΔVnr. Finally, our framework provides an ideal interface design rule toward minimizing voltage losses in next-generation OPV devices.

Highlights

•Tunneling spectroscopy and sensitive EQE combined to map CT state manifold
•Sharp interfaces with lowest-energy CT states exhibit minimal energetic disorder
•Minimizing S1-CT offset and CT disorder yield lowest non-radiative voltage losses
•Formulation and processing shown to reduce voltage loss by reducing CT disorder

Summary

Bulk heterojunction (BHJ) organic solar cells have made remarkable inroads toward 20% power conversion efficiency, yet non-radiative recombination losses (ΔVnr) remain high. Here, we spatially map the energetic landscape of BHJs and ascribe charge transfer (CT) states to each interface, revealing where non-radiative recombination losses occur. We do so by locally mapping the energy distributions of modern PM6-based BHJs using scanning tunneling microscopy (STM) in combination with sensitive external quantum efficiency (s-EQE) analysis. The non-radiative energy losses are dictated by a combination of the singlet (S1) to CT energy offset (ΔES1-CT) and the interfacial energetic disorder. PM6:Y6 achieves low ΔVnr by forming a sharp donor/acceptor (D/A) interface with low interfacial disorder that can be tuned by judicious formulation and processing of the BHJ. The emerging design rule for low ΔVnr in modern non-fullerene acceptors (NFAs) is to achieve sharp D/A interfaces with minimized ΔES1-CT and low interfacial electronic disorder of both D and A components.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました