量子スケーリングのレシピ(A Recipe for Quantum Scaling)

ad

2024-10-14 パシフィック・ノースウェスト国立研究所(PNNL)

量子スケーリングのレシピ(A Recipe for Quantum Scaling)

ARQUINは、分散型量子コンピューターのシミュレーションを可能にするフレームワークで、14の研究機関が協力して開発しました。このフレームワークは、異なる「レイヤー」に分けてシステムを構築することで、量子コンピューターの大規模なスケーリングを目指しています。各機関が異なる要素に取り組み、スーパーコンピューターを冷却する冷却装置やアルゴリズムを最適化しました。ARQUINは、将来的な量子コンピューティングの効率的な拡張を支える重要な基盤となります。

<関連情報>

ARQUIN:マルチノード超伝導量子コンピュータのアーキテクチャ ARQUIN: Architectures for Multinode Superconducting Quantum Computers

James Ang, Gabriella Carini, Yanzhu Chen, Isaac Chuang, Michael Demarco, Sophia Economou, + 27
ACM Transactions on Quantum Computing  Published: 19 September 2024
DOI:https://doi.org/10.1145/3674151

Abstract

Many proposals to scale quantum technology rely on modular or distributed designs wherein individual quantum processors, called nodes, are linked together to form one large multinode quantum computer (MNQC). One scalable method to construct an MNQC is using superconducting quantum systems with optical interconnects. However, internode gates in these systems may be two to three orders of magnitude noisier and slower than local operations. Surmounting the limitations of internode gates will require improvements in entanglement generation, use of entanglement distillation, and optimized software and compilers. Still, it remains unclear what performance is possible with current hardware and what performance algorithms require. In this article, we employ a systems analysis approach to quantify overall MNQC performance in terms of hardware models of internode links, entanglement distillation, and local architecture. We show how to navigate tradeoffs in entanglement generation and distillation in the context of algorithm performance, lay out how compilers and software should balance between local and internode gates, and discuss when noisy quantum internode links have an advantage over purely classical links. We find that a factor of 10–100× better link performance is required and introduce a research roadmap for the co-design of hardware and software towards the realization of early MNQCs. While we focus on superconducting devices with optical interconnects, our approach is general across MNQC implementations.

1601コンピュータ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました