UCIの研究者が多結晶材料の原子レベルのメカニズムを発見(UC Irvine researchers discover atomic-level mechanism in polycrystalline materials)

ad

2024-10-08 カリフォルニア大学校アーバイン校(UCI)

カリフォルニア大学アーバイン校(UC Irvine)の研究者らは、初めて多結晶材料における原子レベルの粒界回転メカニズムを観察しました。電子機器や航空宇宙、自動車技術に広く利用される多結晶材料の構造変化を、高度な電子顕微鏡技術と機械学習を用いて詳細に分析。この研究により、粒界における「ディスコネクション」という欠陥が粒の回転を引き起こすことを確認しました。この発見は、材料の効率や耐久性を向上させる新たな手法につながる可能性があります。

<関連情報>

ナノ結晶材料における結晶粒回転メカニズム 白金薄膜におけるマルチスケール観察 Grain rotation mechanisms in nanocrystalline materials: Multiscale observations in Pt thin films

Yuan Tian, Xiaoguo Gong, Mingjie Xu, Caihao Qiu, […], and Xiaoqing Pan
Science  Published:3 Oct 2024
DOI:https://doi.org/10.1126/science.adk6384

Editor’s summary

Determining exactly how materials deform is key to better engineering and design, but certain processes, such as the mechanism behind rigid body rotation of grains, have been challenging to isolate. Tian et al. used four-dimensional transmission electron microscopy to study the mechanism behind nanograin rotation in a platinum thin film. The authors identified a primary mechanism for rotation, along with a correlation between rotation and grain growth or shrinkage. These observations should help us better understand the mechanical properties of a wide range of materials. —Brent Grocholski

Abstract

Near-rigid-body grain rotation is commonly observed during grain growth, recrystallization, and plastic deformation in nanocrystalline materials. Despite decades of research, the dominant mechanisms underlying grain rotation remain enigmatic. We present direct evidence that grain rotation occurs through the motion of disconnections (line defects with step and dislocation character) along grain boundaries in platinum thin films. State-of-the-art in situ four-dimensional scanning transmission electron microscopy (4D-STEM) observations reveal the statistical correlation between grain rotation and grain growth or shrinkage. This correlation arises from shear-coupled grain boundary migration, which occurs through the motion of disconnections, as demonstrated by in situ high-angle annular dark-field STEM observations and the atomistic simulation–aided analysis. These findings provide quantitative insights into the structural dynamics of nanocrystalline materials.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました