量子研究が効率的な超高密度光メモリーストレージへの道を開く(Quantum research paves the way toward efficient, ultra-high-density optical memory storage)

ad

2024-10-02 アルゴンヌ国立研究所(ANL)

アルゴンヌ国立研究所とシカゴ大学の研究者は、レアアース元素と固体内の欠陥が相互作用して光データを保存できる新しいメモリ技術を提案しました。この技術では、レアアースから量子欠陥へのエネルギー転送を利用して、従来の光メモリよりも高密度で効率的なデータ保存が可能です。量子欠陥が光を吸収しスピン状態を変化させることで、長期間データを保存できる可能性が示されています。この研究は、光メモリの進化に向けた重要な一歩です。

<関連情報>

固体中の局在量子エミッター間の近接場エネルギー移動の第一原理研究 First-principles investigation of near-field energy transfer between localized quantum emitters in solids

Swarnabha Chattaraj, Supratik Guha, and Giulia Galli
Physical Review Research  Published 14 August 2024
DOI:https://doi.org/10.1103/PhysRevResearch.6.033170

量子研究が効率的な超高密度光メモリーストレージへの道を開く(Quantum research paves the way toward efficient, ultra-high-density optical memory storage)

Abstract

We present a predictive and general approach to investigate near-field energy transfer processes between localized defects in semiconductors, which couples first-principles electronic structure calculations and a nonrelativistic quantum electrodynamics description of photons in the weak-coupling regime. The approach is general and can be readily applied to investigate broad classes of defects in solids. We apply our approach to investigate an exemplar point defect in an oxide, the F center in MgO, and we show that the energy transfer from a magnetic source, e.g., a rare-earth impurity, to the vacancy can lead to spin nonconserving long-lived excitations that are dominant processes in the near field, at distances relevant to the design of photonic devices and ultrahigh dense memories. We also define a descriptor for coherent energy transfer to predict geometrical configurations of emitters to enable long-lived excitations, that are useful to design optical memories in semiconductor and insulators.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました