新しいアプローチでポートフォリオ最適化の限界を克服(Rensselaer Researcher Overcomes Portfolio Optimization Limitations With New Approach)

ad

2024-09-24 レンセラー工科大学 (RPI)

新しいアプローチでポートフォリオ最適化の限界を克服(Rensselaer Researcher Overcomes Portfolio Optimization Limitations With New Approach)

レンセラー工科大学の研究者エディリシンゲ博士は、ポートフォリオ最適化の課題である高次元・小サンプル問題(HDSS)を克服する新しいデータ駆動型アプローチを開発しました。この方法は、資産数が多く歴史データが少ない場合に発生するリスク過多やパフォーマンス低下を改善します。研究では、レバレッジ制約やカルディナリティ制御、ノルム制約を使用してリスクを抑え、S&P 500のデータを用いたケーススタディで有効性が確認されました。

<関連情報>

データ駆動型平均分散スパース・ポートフォリオのレバレッジ制御下での選択 Data-Driven Mean–Variance Sparse Portfolio Selection under Leverage Control

Chanaka Edirisinghe,Jaehwan Jeong
The Journal of Portfolio Management
DOI: 10.3905/jpm.2024.50.8.196

Abstract

Portfolio selection often involves a large number of potential constituent assets, although relevant historical data samples tend to be relatively small, termed the high-dimensional small-sample (HDSS) problem. In addition to parameter estimation issues, mean–variance (MV) optimal portfolios also tend to be highly leveraged and fragmented. This study develops cardinality control to generate sparse MV portfolios, while portfolio short exposure is controlled directly via a leverage constraint. Resulting computational difficulties are circumvented by asset position control using absolute and Euclidean norm parametrization within constraints of an MV optimization. Data-driven calibration of the norm parameters utilizing a cross-validation scheme optimizes the out-of-sample test performance of the optimal portfolios while satisfying portfolio sparsity and leverage restrictions probabilistically. An empirical study with large asset sets examines various policy implications on optimal portfolio choice and compared with the standard MV model. Not only are the out-of-sample efficient frontiers of the proposed approach superior, but the optimal portfolios also satisfy the prescribed sparsity and leverage conditions.

1505金融工学
ad
ad
Follow
ad
タイトルとURLをコピーしました