天体物理学:AIが太陽系外惑星に新たな光を当てるAstrophysics: AI shines a new light on exoplanets

ad

2024-09-06 ミュンヘン大学(LMU)

LMUを中心とした研究チームが、AIを用いて遠方の惑星(系外惑星)の大気を精密にモデル化する方法を開発しました。物理情報を組み込んだニューラルネットワーク(PINNs)により、従来よりも正確に光の散乱をシミュレーションし、特に雲の影響を考慮した大気の分析が可能となりました。これにより、系外惑星の化学組成や温度に関する理解が大幅に向上し、将来的にはさらに詳細な大気モデルの開発が期待されています。

<関連情報>

惑星外大気のレイリー散乱を物理情報ニューラルネットワークを用いて近似する Approximating Rayleigh scattering in exoplanetary atmospheres using physics-informed neural networks

David Dahlbüdding, Karan Molaverdikhani, Barbara Ercolano, Tommaso Grassi
Monthly Notices of the Royal Astronomical Society  Published:02 August 2024
DOI:https://doi.org/10.1093/mnras/stae1872

天体物理学:AIが太陽系外惑星に新たな光を当てるAstrophysics: AI shines a new light on exoplanets

ABSTRACT

This research introduces an innovative application of physics-informed neural networks (PINNs) to tackle the intricate challenges of radiative transfer (RT) modelling in exoplanetary atmospheres, with a special focus on efficiently handling scattering phenomena. Traditional RT models often simplify scattering as absorption, leading to inaccuracies. Our approach utilizes PINNs, noted for their ability to incorporate the governing differential equations of RT directly into their loss function, thus offering a more precise yet potentially fast modelling technique. The core of our method involves the development of a parametrized PINN tailored for a modified RT equation, enhancing its adaptability to various atmospheric scenarios. We focus on RT in transiting exoplanet atmospheres using a simplified 1D isothermal model with pressure-dependent coefficients for absorption and Rayleigh scattering. In scenarios of pure absorption, the PINN demonstrates its effectiveness in predicting transmission spectra for diverse absorption profiles. For Rayleigh scattering, the network successfully computes the RT equation, addressing both direct and diffuse stellar light components. While our preliminary results with simplified models are promising, indicating the potential of PINNs in improving RT calculations, we acknowledge the errors stemming from our approximations as well as the challenges in applying this technique to more complex atmospheric conditions. Specifically, extending our approach to atmospheres with intricate temperature-pressure profiles and varying scattering properties, such as those introduced by clouds and hazes, remains a significant area for future development.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました