水素スピルオーバーが触媒反応を制御する(Hydrogen Spillover Regulates Catalysis)

ad

2024-09-03 パシフィック・ノースウェスト国立研究所(PNNL)

単一原子触媒(SACs)である酸化チタン支持ロジウム(Rh1/TiO2)を用いたエチレンの水素化反応で、水素原子がロジウムから酸化チタンへ「スピルオーバー」し、酸化チタンの電子環境を変化させることでロジウムの触媒活性が向上することが示されました。これにより、酸化物支持材料が触媒活性部位に与える影響を理解することが、効果的な触媒の開発に重要であることが明らかになりました。この研究は、SACsの構造と機能の関係を理解し、反応性を調整可能にするための新たな知見を提供します。

<関連情報>

室温エチレン水素化反応における水素スピルオーバーが酸化チタン中のRh1活性部位を制御する Hydrogen Spillover Is Regulating Minority Rh1 Active Sites on TiO2 in Room-Temperature Ethylene Hydrogenation

Linxiao Chen,Debora Meira,Libor Kovarik,and János Szanyi
ACS Catalysis  Published April 26, 2024
DOI:https://doi.org/10.1021/acscatal.4c00482

Abstract

水素スピルオーバーが触媒反応を制御する(Hydrogen Spillover Regulates Catalysis)

The complicated dynamics of active sites on single-atom catalysts under reducing conditions limits their applications in hydrogenation reactions and mechanistic understanding. Herein, we report that on Rh1/TiO2, *H spillover during room-temperature ethylene hydrogenation hydroxylates and reduces TiO2, enhancing the intrinsic activity of Rh1 by 9-fold. Spectroscopic and kinetic evidence suggests that the spillover of *H is suppressed by their facile reaction with C2H4, most of the spilled *H are nonreactive spectators, and >99% turnovers occur on a small subset (<20%) of exposed “active Rh1”. Steady-state kinetics indicates competitive adsorption between H and C2H4, H2 dissociation is the rate-determining step, and the apparent activation barrier (Ea,app) of the reaction is ∼48 kJ/mol. The evolution of Rh1 under H2 was further tracked by spectroscopic and microscopic techniques at elevated temperatures. At 200 °C, more Rh1 are exposed, but these Rh1 are at least 5-fold less active than that of the “active Rh1”. At 300 °C, Rh clusters derived from Rh1 become the main active sites, shifting Ea,app to 62 kJ/mol, characteristic of Rh nanoparticles. At ≥400 °C, larger and more active Rh particles in the strong metal–support interaction state are created. This work revealed the unexpected regulation effects of *H spillover on M1 active sites under ambient conditions, differentiated the minority active M1 sites, and demonstrated how the stability of M1 under reducing atmospheres affects hydrogenation catalysis.

0502有機化学製品
ad
ad
Follow
ad
タイトルとURLをコピーしました