マサチューセッツ工科大学の研究者が、大規模言語モデルを使用して複雑なシステムの問題にフラグを立てる(MIT researchers use large language models to flag problems in complex systems)

ad

2024-08-14 マサチューセッツ工科大学(MIT)

MITの研究者たちは、大規模言語モデル(LLM)が、風力発電所などの設備における異常検知に有効である可能性を示しました。従来、ディープラーニングモデルを用いて異常を検出していましたが、LLMは事前訓練された状態で使用でき、トレーニングコストを削減できます。研究チームは、時系列データをテキスト形式に変換するフレームワーク「SigLLM」を開発し、異常検知や将来のデータ予測に活用しました。今後はLLMの性能向上と処理速度の改善が課題です。

<関連情報>

大規模言語モデルは、時系列データの異常検出器になるのか? Large language models can be zero-shot anomaly detectors for time series?

Sarah Alnegheimish, Linh Nguyen, Laure Berti-Equille, Kalyan Veeramachaneni
arXiv  last revised 12 Aug 2024 (this version, v2)
DOI:https://doi.org/10.48550/arXiv.2405.14755

マサチューセッツ工科大学の研究者が、大規模言語モデルを使用して複雑なシステムの問題にフラグを立てる(MIT researchers use large language models to flag problems in complex systems)

Abstract

Recent studies have shown the ability of large language models to perform a variety of tasks, including time series forecasting. The flexible nature of these models allows them to be used for many applications. In this paper, we present a novel study of large language models used for the challenging task of time series anomaly detection. This problem entails two aspects novel for LLMs: the need for the model to identify part of the input sequence (or multiple parts) as anomalous; and the need for it to work with time series data rather than the traditional text input. We introduce sigllm, a framework for time series anomaly detection using large language models. Our framework includes a time-series-to-text conversion module, as well as end-to-end pipelines that prompt language models to perform time series anomaly detection. We investigate two paradigms for testing the abilities of large language models to perform the detection task. First, we present a prompt-based detection method that directly asks a language model to indicate which elements of the input are anomalies. Second, we leverage the forecasting capability of a large language model to guide the anomaly detection process. We evaluated our framework on 11 datasets spanning various sources and 10 pipelines. We show that the forecasting method significantly outperformed the prompting method in all 11 datasets with respect to the F1 score. Moreover, while large language models are capable of finding anomalies, state-of-the-art deep learning models are still superior in performance, achieving results 30% better than large language models.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました