極めて高速でコンパクトなコンピューター・メモリーへの道を開く(Paving the Way to Extremely Fast, Compact Computer Memory)

ad

2024-07-17 テキサス大学オースチン校(UT Austin)

テキサス大学オースティン校とマックスプランク研究所の研究者が、層状マルチフェロイック材料であるヨウ化ニッケル(NiI2)が、非常に高速かつコンパクトなデバイスに最適であることを示しました。マルチフェロイック材料は磁電結合という特性を持ち、電場で磁気特性を操作し、磁場で電気特性を操作できます。研究チームは、NiI2が既知の材料よりも強い磁電結合を持つことを発見し、これが高速でエネルギー効率の良い磁気メモリや量子コンピュータ、化学センサーに利用できると報告しました。この研究により、他の材料の発見や、NiI2の特性をさらに強化する技術開発が期待されています。

<関連情報>

ファンデルワールス型マルチフェロイックスにおける巨大なキラル磁電振動 Giant chiral magnetoelectric oscillations in a van der Waals multiferroic

Frank Y. Gao,Xinyue Peng,Xinle Cheng,Emil Viñas Boström,Dong Seob Kim,Ravish K. Jain,Deepak Vishnu,Kalaivanan Raju,Raman Sankar,Shang-Fan Lee,Michael A. Sentef,Takashi Kurumaji,Xiaoqin Li,Peizhe Tang,Angel Rubio & Edoardo Baldini
Nature  Published:17 July 2024
DOI:https://doi.org/10.1038/s41586-024-07678-5

極めて高速でコンパクトなコンピューター・メモリーへの道を開く(Paving the Way to Extremely Fast, Compact Computer Memory)

Abstract

Helical spin structures are expressions of magnetically induced chirality, entangling the dipolar and magnetic orders in materials1,2,3,4. The recent discovery of helical van der Waals multiferroics down to the ultrathin limit raises prospects of large chiral magnetoelectric correlations in two dimensions5,6. However, the exact nature and magnitude of these couplings have remained unknown so far. Here we perform a precision measurement of the dynamical magnetoelectric coupling for an enantiopure domain in an exfoliated van der Waals multiferroic. We evaluate this interaction in resonance with a collective electromagnon mode, capturing the impact of its oscillations on the dipolar and magnetic orders of the material with a suite of ultrafast optical probes. Our data show a giant natural optical activity at terahertz frequencies, characterized by quadrature modulations between the electric polarization and magnetization components. First-principles calculations further show that these chiral couplings originate from the synergy between the non-collinear spin texture and relativistic spin–orbit interactions, resulting in substantial enhancements over lattice-mediated effects. Our findings highlight the potential for intertwined orders to enable unique functionalities in the two-dimensional limit and pave the way for the development of van der Waals magnetoelectric devices operating at terahertz speeds.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました