分子に光を当てる L字型メタマテリアルは光の方向を制御できる(Shining a light on molecules: L-shaped metamaterials can control light direction)

ad

2024-05-20 ペンシルベニア州立大学(PennState)

偏光波の方向性(キラリティ)は、分子の識別や分離に利用できますが、制御は困難でした。ペンシルベニア州立大学とネブラスカ大学リンカーン校の研究チームは、超薄型の光学素子を開発し、偏光波の方向を制御可能にしました。この素子はメタマテリアルを使用し、キラリティを識別することで、特定の薬剤が健康細胞に無害かどうかを判断できます。例えば、サリドマイドの右手型分子は効果的ですが、左手型分子は有害です。この技術により、薬の分子構造を迅速に画像化し、その挙動を理解できます。また、この光学素子は軽量で多周波数に調整可能なため、暗号化通信システムにも応用できます。

<関連情報>

L型誘電体メタマテリアルで広帯域増強光のキラリティを制御する Controlling the broadband enhanced light chirality with L-shaped dielectric metamaterials

Ufuk Kilic,Matthew Hilfiker,Shawn Wimer,Alexander Ruder,Eva Schubert,Mathias Schubert & Christos Argyropoulos
Nature Communications  Published04 May 2024
DOIhttps://doi.org/10.1038/s41467-024-48051-4

分子に光を当てる L字型メタマテリアルは光の方向を制御できる(Shining a light on molecules: L-shaped metamaterials can control light direction)

Abstract

The inherently weak chiroptical responses of natural materials limit their usage for controlling and enhancing chiral light-matter interactions. Recently, several nanostructures with subwavelength scale dimensions were demonstrated, mainly due to the advent of nanofabrication technologies, as a potential alternative to efficiently enhance chirality. However, the intrinsic lossy nature of metals and the inherent narrowband response of dielectric planar thin films or metasurface structures pose severe limitations toward the practical realization of broadband and tailorable chiral systems. Here, we tackle these problems by designing all-dielectric silicon-based L-shaped optical metamaterials based on tilted nanopillars that exhibit broadband and enhanced chiroptical response in transmission operation. We use an emerging bottom-up fabrication approach, named glancing angle deposition, to assemble these dielectric metamaterials on a wafer scale. The reported strong chirality and optical anisotropic properties are controllable in terms of both amplitude and operating frequency by simply varying the shape and dimensions of the nanopillars. The presented nanostructures can be used in a plethora of emerging nanophotonic applications, such as chiral sensors, polarization filters, and spin-locked nanowaveguides.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました