低所得国向けのエコで安価なバッテリー(Eco-friendly and affordable battery for low-income countries)

ad

2024-05-14 リンショーピング大学

リンショーピング大学の研究者たちは、8000回以上使用可能な亜鉛とリグニンからなる持続可能な電池を開発しました。この電池は安価でリサイクルが容易であり、特に電力が限られている国々向けに設計されています。亜鉛とリグニンは低コストで入手可能な材料で、電池は高い安定性と一週間程度の充電保持能力を持ちます。研究チームはこの技術がリチウムイオン電池に代わる可能性を持つと考えています。量産には企業の関与が必要ですが、大型電池への展開も期待されています。持続可能な技術の普及は気候変動防止に寄与するとされています。

<関連情報>

長寿命充電可能な水性亜鉛-リグニン電池のための水中ポリマー塩電解質 Water-in-Polymer Salt Electrolyte for Long-Life Rechargeable Aqueous Zinc-Lignin Battery

Divyaratan Kumar, Leandro R. Franco, Nicole Abdou, Rui Shu, Anna Martinelli, C. Moyses Araujo, Johannes Gladisch, Viktor Gueskine, Reverant Crispin, Ziyauddin Khan
Energy & Environmental Materials  Published: 07 May 2024
DOI:https://doi.org/10.1002/eem2.12752

Details are in the caption following the image

Abstract

Zinc metal batteries (ZnBs) are poised as the next-generation energy storage solution, complementing lithium-ion batteries, thanks to their cost-effectiveness and safety advantages. These benefits originate from the abundance of zinc and its compatibility with non-flammable aqueous electrolytes. However, the inherent instability of zinc in aqueous environments, manifested through hydrogen evolution reactions (HER) and dendritic growth, has hindered commercialization due to poor cycling stability. Enter potassium polyacrylate (PAAK)-based water-in-polymer salt electrolyte (WiPSE), a novel variant of water-in-salt electrolytes (WiSE), designed to mitigate side reactions associated with water redox processes, thereby enhancing the cyclic stability of ZnBs. In this study, WiPSE was employed in ZnBs featuring lignin and carbon composites as cathode materials. Our research highlights the crucial function of acrylate groups from WiPSE in stabilizing the ionic flux on the surface of the Zn electrode. This stabilization promotes the parallel deposition of Zn along the (002) plane, resulting in a significant reduction in dendritic growth. Notably, our sustainable Zn-lignin battery showcases remarkable cyclic stability, retaining 80% of its initial capacity after 8000 cycles at a high current rate (1 A g−1) and maintaining over 75% capacity retention up to 2000 cycles at a low current rate (0.2 A g−1). This study showcases the practical application of WiPSE for the development of low-cost, dendrite-free, and scalable ZnBs.

ad
0402電気応用
ad
ad


Follow
ad
タイトルとURLをコピーしました