廃棄二酸化炭素を高価値化学薬品に変換する新技術を開発、約30%のコスト削減を達成(New technique by NUS scientists to transform waste carbon dioxide into high-value chemicals achieves cost reduction of about 30%)

ad

2024-05-14 シンガポール国立大学(NUS)

シンガポール国立大学(NUS)の研究者は、廃棄CO2を付加価値のある化学物質や燃料に変換する革新的な技術を開発しました。Lum Yanwei助教授率いるチームは、工業プロセスの排ガスから直接CO2を高価値の多炭素製品に変換する技術を実現しました。この技術は高純度CO2を必要とせず、一般的な廃棄物を効率的に再利用し、炭素循環の促進と化石燃料依存の削減に貢献します。研究チームは、ニッケルベースの複合触媒を開発し、酸性電解質と組み合わせることで高効率なCO2還元を実現しました。このシステムは純粋なCO2を使用するシステムと同等の性能を示し、CO2の精製コストを削減し、持続可能なソリューションに寄与します。

<関連情報>

ナノ曲率誘起電界効果で単一原子電極触媒の活性制御が可能に Nanocurvature-induced field effects enable control over the activity of single-atom electrocatalysts

Meng Wang,Bingqing Wang,Jiguang Zhang,Shibo Xi,Ning Ling,Ziyu Mi,Qin Yang,Mingsheng Zhang,Wan Ru Leow,Jia Zhang & Yanwei Lum
Nature Communications  Published:26 February 2024
DOI:https://doi.org/10.1038/s41467-024-46175-1

廃棄二酸化炭素を高価値化学薬品に変換する新技術を開発、約30%のコスト削減を達成(New technique by NUS scientists to transform waste carbon dioxide into high-value chemicals achieves cost reduction of about 30%)

Abstract

Tuning interfacial electric fields provides a powerful means to control electrocatalyst activity. Importantly, electric fields can modify adsorbate binding energies based on their polarizability and dipole moment, and hence operate independently of scaling relations that fundamentally limit performance. However, implementation of such a strategy remains challenging because typical methods modify the electric field non-uniformly and affects only a minority of active sites. Here we discover that uniformly tunable electric field modulation can be achieved using a model system of single-atom catalysts (SACs). These consist of M-N4 active sites hosted on a series of spherical carbon supports with varying degrees of nanocurvature. Using in-situ Raman spectroscopy with a Stark shift reporter, we demonstrate that a larger nanocurvature induces a stronger electric field. We show that this strategy is effective over a broad range of SAC systems and electrocatalytic reactions. For instance, Ni SACs with optimized nanocurvature achieved a high CO partial current density of ~400 mA cm−2 at >99% Faradaic efficiency for CO2 reduction in acidic media.

酸性媒体により、模擬排ガスから多炭素生成物の酸素耐性電解合成が可能に Acidic media enables oxygen-tolerant electrosynthesis of multicarbon products from simulated flue gas

Meng Wang,Bingqing Wang,Jiguang Zhang,Shibo Xi,Ning Ling,Ziyu Mi,Qin Yang,Mingsheng Zhang,Wan Ru Leow,Jia Zhang & Yanwei Lum
Nature Communications  Published:09 February 2024
DOI:https://doi.org/10.1038/s41467-024-45527-1

figure 1

Abstract

Renewable electricity powered electrochemical CO2 reduction (CO2R) offers a valuable method to close the carbon cycle and reduce our overreliance on fossil fuels. However, high purity CO2 is usually required as feedstock, which potentially decreases the feasibility and economic viability of the process. Direct conversion of flue gas is an attractive option but is challenging due to the low CO2 concentration and the presence of O2 impurities. As a result, up to 99% of the applied current can be lost towards the undesired oxygen reduction reaction (ORR). Here, we show that acidic electrolyte can significantly suppress ORR on Cu, enabling generation of multicarbon products from simulated flue gas. Using a composite Cu and carbon supported single-atom Ni tandem electrocatalyst, we achieved a multicarbon Faradaic efficiency of 46.5% at 200 mA cm-2, which is ~20 times higher than bare Cu under alkaline conditions. We also demonstrate stable performance for 24 h with a multicarbon product full-cell energy efficiency of 14.6%. Strikingly, this result is comparable to previously reported acidic CO2R systems using pure CO2. Our findings demonstrate a potential pathway towards designing efficient electrolyzers for direct conversion of flue gas to value-added chemicals and fuels.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました