メタン排出を捕捉するため、科学者がナノシェル触媒を開発(To capture methane emissions, scientists create nanoshell catalysts)

ad

2024-03-27 バッファロー大学(UB)

バッファロー大学を中心とする研究チームが、気候変動を引き起こすメタン排出を有用な商業製品に変換する新しい触媒を開発しています。この研究は、Nature Communicationsに先月発表され、天然ガスや原油生産、家畜飼育、埋立地、石炭採掘などの産業に影響を与える可能性があります。この技術は、化学原料などの価値ある商品への変換にコスト効果の高い解決策を提供し、さらに、半導体、生物技術、電気化学などの分野で新しい材料が必要な用途にも適用可能です。

<関連情報>

熱力学への挑戦:単相ナノセラミックにおける非混和性元素の結合 Challenging thermodynamics: combining immiscible elements in a single-phase nano-ceramic

Shuo Liu,Chaochao Dun,Qike Jiang,Zhengxi Xuan,Feipeng Yang,Jinghua Guo,Jeffrey J. Urban & Mark T. Swihart
Nature Communications  Published:07 February 2024
DOI:https://doi.org/10.1038/s41467-024-45413-w

figure 1

Abstract

The Hume-Rothery rules governing solid-state miscibility limit the compositional space for new inorganic material discovery. Here, we report a non-equilibrium, one-step, and scalable flame synthesis method to overcome thermodynamic limits and incorporate immiscible elements into single phase ceramic nanoshells. Starting from prototype examples including (NiMg)O, (NiAl)Ox, and (NiZr)Ox, we then extend this method to a broad range of Ni-containing ceramic solid solutions, and finally to general binary combinations of elements. Furthermore, we report an “encapsulated exsolution” phenomenon observed upon reducing the metastable porous (Ni0.07Al0.93)Ox to create ultra-stable Ni nanoparticles embedded within the walls of porous Al2O3 nanoshells. This nanoconfined structure demonstrated high sintering resistance during 640 h of catalysis of CO2 reforming of methane, maintaining constant 96% CH4 and CO2 conversion at 800 °C and dramatically outperforming conventional catalysts. Our findings could greatly expand opportunities to develop novel inorganic energy, structural, and functional materials.

ad

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました