粒子検出器に弾みをつける(Giving particle detectors a boost)

ad

2024-03-11 アルゴンヌ国立研究所(ANL)

ANLの科学者たちは、微小な電気信号を増幅する新しい装置、ナノクリオトロンを開発しました。この装置は、超伝導の特性を一時的にオフにすることで、電気信号を大幅に増幅します。この技術は、ブルックヘイブン国立研究所の電子イオン衝突器などの衝突実験で特に重要です。この装置は、高磁場下でも機能するようにするために、材料の幾何学を変更し、欠陥を導入することで改良されます。

<関連情報>

磁場中における平行チャンネルナノクリオトロンの設計と性能
Design and performance of parallel-channel nanocryotrons in magnetic fields

Timothy Draher;Tomas Polakovic;Yi Li;John Pearson;Alan Dibos;Zein-Eddine Meziani;Zhili Xiao;Valentine Novosad
Applied Physics Letters  Published:December 18 2023
DOI:https://doi.org/10.1063/5.0180709

粒子検出器に弾みをつける(Giving particle detectors a boost)

We introduce a design modification to conventional geometry of the cryogenic three-terminal switch, the nanocryotron (nTron). The conventional geometry of nTrons is modified by including parallel current-carrying channels, an approach aimed at enhancing the device’s performance in magnetic field environments. The common challenge in nTron technology is to maintain efficient operation under varying magnetic field conditions. Here, we show that the adaptation of parallel channel configurations leads to an enhanced gate signal sensitivity, an increase in operational gain, and a reduction in the impact of superconducting vortices on nTron operation within magnetic fields up to 1 T. Contrary to traditional designs that are constrained by their effective channel width, the parallel nanowire channels permits larger nTron cross sections, further bolstering the device’s magnetic field resilience while improving electro-thermal recovery times due to reduced local inductance. This advancement in nTron design not only augments its functionality in magnetic fields but also broadens its applicability in technological environments, offering a simple design alternative to existing nTron devices.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました