2024-01-17 ノースウェスタン大学
◆この手法は高真空透過型電子顕微鏡(TEM)内で作用し、ガス原子の独自の結合を推定するだけでなく、ナノ構造のイメージングを向上させます。シリコンニトリドマイクロチップは背景散乱を最小限に抑え、最薄部分が1/5の厚さであるため、高い分解能(1.02オングストローム)を実現。このプラットフォーム技術は、広範な分野での利用が期待されています。
<関連情報>
- https://news.northwestern.edu/stories/2024/01/innovative-membrane-platform-gas-atoms-analysis/
- https://www.science.org/doi/10.1126/sciadv.adj6417
高空間分解能と分光可視性を備えたその場顕微鏡用超薄膜窒化ケイ素マイクロチップ Ultrathin silicon nitride microchip for in situ/operando microscopy with high spatial resolution and spectral visibility
Kunmo Koo, Zhiwei Li, Yukun Liu, Stephanie M. Ri,
Science Advances Published:17 Jan 2024 DOI:https://doi.org/10.1126/sciadv.adj6417
Abstract
Utilization of in situ/operando methods with broad beams and localized probes has accelerated our understanding of fluid-surface interactions in recent decades. The closed-cell microchips based on silicon nitride (SiNx) are widely used as “nanoscale reactors” inside the high-vacuum electron microscopes. However, the field has been stalled by the high background scattering from encapsulation (typically ~100 nanometers) that severely limits the figures of merit for in situ performance. This adverse effect is particularly notorious for gas cell as the sealing membranes dominate the overall scattering, thereby blurring any meaningful signals and limiting the resolution. Herein, we show that by adopting the back-supporting strategy, encapsulating membrane can be reduced substantially, down to ~10 nanometers while maintaining structural resiliency. The systematic gas cell work demonstrates advantages in figures of merit for hitherto the highest spatial resolution and spectral visibility. Furthermore, this strategy can be broadly adopted into other types of microchips, thus having broader impact beyond the in situ/operando fields.