2024-01-03 デューク大学(Duke)
◆DEEDは900以上の高性能材料の新しい組成を予測し、そのうち17種類が実際に試作・製造されました。これにより、産業を変革する特性を最適化する研究が加速される可能性があります。新しい材料クラスは航空業界などで利用され、デューク大学の材料データベース「Duke Automatic-FLOW for Materials Database(AFLOW)」も活用されています。
<関連情報>
高エントロピー・セラミックス発見のための無秩序エンタルピー・エントロピー記述子 Disordered enthalpy–entropy descriptor for high-entropy ceramics discovery
Simon Divilov,Hagen Eckert,David Hicks,Corey Oses,Cormac Toher,Rico Friedrich,Marco Esters,Michael J. Mehl,Adam C. Zettel,Yoav Lederer,Eva Zurek,Jon-Paul Maria,Donald W. Brenner,Xiomara Campilongo,Suzana Filipović,William G. Fahrenholtz,Caillin J. Ryan,Christopher M. DeSalle,Ryan J. Crealese,Douglas E. Wolfe,Arrigo Calzolari & Stefano Curtarolo
Nature Published:03 January 2024
DOI:https://doi.org/10.1038/s41586-023-06786-y
Abstract
The need for improved functionalities in extreme environments is fuelling interest in high-entropy ceramics1,2,3. Except for the computational discovery of high-entropy carbides, performed with the entropy-forming-ability descriptor4, most innovation has been slowly driven by experimental means1,2,3. Hence, advancement in the field needs more theoretical contributions. Here we introduce disordered enthalpy–entropy descriptor (DEED), a descriptor that captures the balance between entropy gains and enthalpy costs, allowing the correct classification of functional synthesizability of multicomponent ceramics, regardless of chemistry and structure. To make our calculations possible, we have developed a convolutional algorithm that drastically reduces computational resources. Moreover, DEED guides the experimental discovery of new single-phase high-entropy carbonitrides and borides. This work, integrated into the AFLOW computational ecosystem, provides an array of potential new candidates, ripe for experimental discoveries.